In situ sources and cycling

of methylmercury In the oxic water column

Robert P. Mason?, Zofia Baumannt, Maodian Liu*?, Sofi Jonsson®3, Emily Seelen?, Ewelina Rubin#, Stefan Bertilsson>, Mortiz Buck®, Celia.Y. Chen®
1: University of Connecticut, Groton, CT; 2: Peking University, China; 3: Stockholm University, Sweden; 4: University of Road Island, Rl, 5: Uppsala University, Sweden, 6: Dartmouth College, NH

Sediment Plankton

pmol MeHg g~ d.w.

—

A1 A2 B » A1 A2 B

MeHg catchment runoff load, M Hg" catchment runoff load, =~ MeHg atmospheric deposition load,

i Hg" atmospheric deposition load, MeHg accumulated sediment pool,

B-HgS accumulated sediment pool, ' Hg'"-NOM accumulated sediment pool

Figure 1. Modeled sources of MeHg to coastal sediments and plankton derived
using results from mesocosm studies. Taken from ref. 5. These results are
consistent with field data® that show little relationship between MeHg in pelagic
organisms and sediment MeHg
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Figure 2: Incubation of seawater from Eastern LIS with 1°°Hg(l1) resulted
In formation of MeHg. There were differences between dark (brown) and
light (blue) incubations. Circles represent means and error bars standard
deviations (3 reps). Red point shows no MeHg was formed in acidified
seawater upon reagent addition.

Introduction: For humans and wildlife, exposure to methylmercury (MeHg), the most toxic and bioaccumulative form of mercury (Hg), I1s mostly from
seafood consumptiont. Historically, it has been proposed that MeHg bioaccumulating in marine systems is produced within the sub-thermocline waters of the
ocean? or in the coastal zone sediments3, primarily because microbially-mediated production of MeHg occurs in the presence of anaerobic organisms.?
Mesocosm results point to the significant pool of MeHg formation in sediments, but this is not the dominant source to plankton (Fig. 1)°, consistent with field
data.®’ Recent estimates of the photochemical degradation of MeHg suggest that degradation of MeHg in surface waters is substantially higher than previously
thought®, requiring additional MeHg sources to account for the MeHg in open ocean surface waters and food web. While the importance of Hg methylation in
ocean surface waters has been proposed, evidence has been lacking. Our results support formation of MeHg In oxic seawater and point to the significance of
light and particle aggregates (Figs. 2, 3). Here we discuss our more recent research aimed at examining the importance of methylation in oxic waters as a source
to marine food webs. Our current investigations build on these studies and are formulated by overarching hypotheses illustrated in Fig. 4.

Prior Studies have highlighted the potential for oxic waters to be hotspots of Hg methylation. In surface waters, reduced environments can occur in large
flocculated material (“marine snow”), where organic matter degradation iIs high (Figs 2, 3). Our results showed a substantial Hg methylation in the presence
of larger particle aggregates (Fig. 3), but not in the smaller particles®. Results of the field study in a large estuary in Canada support the significance of
particle aggregates in formation of MeHg. Substantial production of MeHg occurred where the river mixed with the estuarine waters, promoting organic
matter flocculation and enhanced microbial activity (Fig. 5).1° Overall, these preliminary results suggest that net methylation within the water column can
occur, but that specific conditions are needed for net MeHg formation. Results of the light vs dark incubations with Hg suggest that under light conditions
MeHg formation is initially enhanced (Fig. 2).
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Figure 3: Net methylation rates (dC/dt = k..[Hgll]-k,,[MeHq]) for different
size fractions collected from 2 experiments and either rolled to enhance floc (R)
or not (UR). From ref. 9.

Recent Results: Mixing of river with seawater has been also found to enhance MeHg formation in Long Island Sound (LIS) supporting the elevated
concentrations of MeHg at the mouth of Connecticut River that flows into LIS (Fig. 6). Additionally, marine snow was settled out from water collected

genes (HgcA) (Fig. 7). More research iIs needed to solidify these initial findings. We therefore suggest that methylation Is occurring within the river-
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estuarine mixing zone, driven by higher Hg(ll) concentrations in Connecticut River mixing with freshly produced organic matter, especially at high
tide, when we measured the highest net methylation rates in these waters, while in the central basin of LIS there is little net production of MeHg. The

river-estuarine interface provides a location of enhanced microbial activity/MeHg formation.
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Conclusion: Water column methylation Is enhanced In regions where conditions promote the formation of large
particulate flocs, and where redox gradients are strong and anaerobic bacteria that methylate inorganic Hg persist.
We propose that water column methylation Is an important process delivering MeHg for food webs In coastal and
open ocean surface waters.



