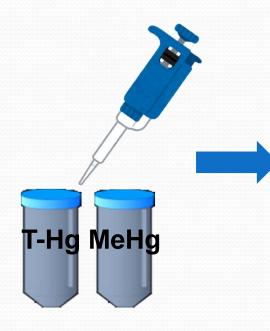
Simple analysis of methylmercury in seafood and its application to assessing methylmercury exposure


Megumi Yamamoto

Department of Environment and Public Health National Institute for Minamata Disease Ministry of the Environment, Japan

Background

- Methylmercury (MeHg) is an environmental neurotoxicant. Minamata Disease is a toxic nervous disease caused by eating seafood contaminated with MeHg compounds.
- 2. People are exposed to MeHg mainly through the consumption of seafood, so determining its concentration in seafood is important for assessing the health risk of MeHg exposure.
- 3. Analysis of MeHg is difficult, so an easy and cost-effective MeHg analysis method is required in many countries, especially developing countries.
- 4. Fish consumption is increasing in Vietnam. Most commercial fish and seafood in Vietnam is locally harvested. However, little information is available on how to estimate the health risk of MeHg exposure through fish consumption in Vietnam.

Developing a simpler method for T-Hg and MeHg analysis

1. Simple analysis of total mercury and methylmercury in seafood using heating vaporization atomic absorption spectrometry 2. Mercury and selenium levels, and their molar ratios in several species of commercial shrimp in Japan regarding the health risk of methylmercury exposure

2.

T-Hg and MeHg in

MeHg exposure in

to determine

humans

Applying this method

seafood for assessing

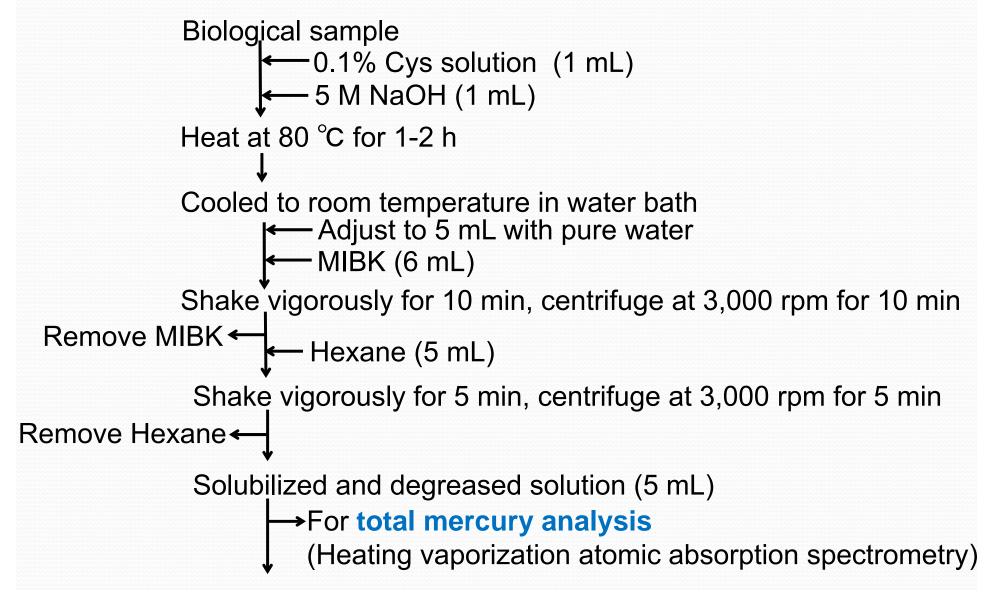
Assessing MeHg exposure in humans: an epidemiological study

3.

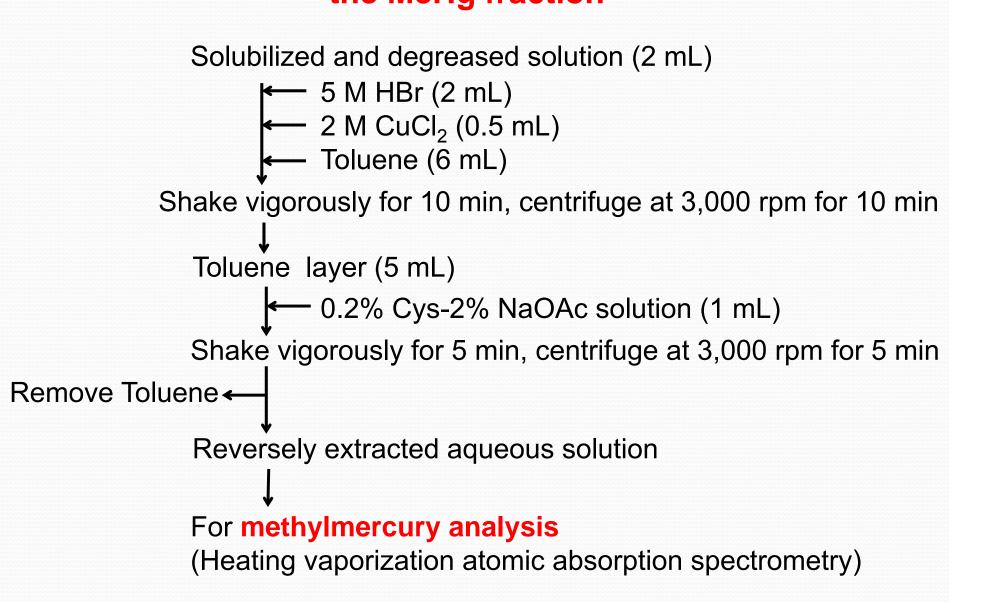
3. Hair mercury levels in relation to fish consumption among Vietnamese in Hanoi

1. Developing a simpler method for T-Hg and MeHg analysis

> Background:


- 1. In many developing countries, Hg analysis is difficult because it requires expensive equipment, with high running costs, and advanced technology.
- 2. In many cases, two sets of apparatus and two samples are needed for the analysis of total mercury (T-Hg) and MeHg analysis.
- Organic mercury in natural biological samples can be assumed to be MeHg, because only MeHg has been detected in natural biological samples, except for human specimens treated with vaccines containing sodium ethylmercuric thiosalicylate.

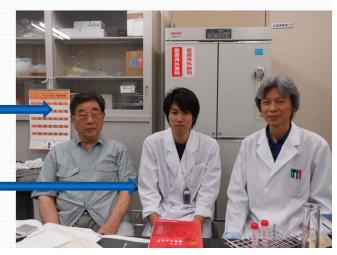
> Purpose:


To develop a simple cost-effective method for T-Hg and MeHg analysis in biological samples, and to apply it to determining Hg concentration in seafood, which is the main source of MeHg exposure.

Basic protocol for T-Hg and MeHg analysis

Step-1: Solubilization and degreasing of biological samples

Step-2: Extraction and reverse-extraction of the MeHg fraction



Study contents

Recovery test using a MeHg standard working solution

- 2. Recovery test using a MeHg-spiked seafood (shrimp muscle) homogenate
- 3. Confirming accuracy of the T-Hg and MeHg analyses using Certified Reference Materials (CRMs cod fish, sword fish, and hair)
- 4. Cross checking with another MeHg analytical method (GC-ECD method: published by Dr. Hirokatsu Akagi, NIMD)
- 5. Applying this method to T-Hg and MeHg analysis in commercial seafood)

Dr. Atsuhiro Nakano (former department director of Basic Medical Sciences) Keisuke Yoshimoto (Prefectural University of Kumamoto)

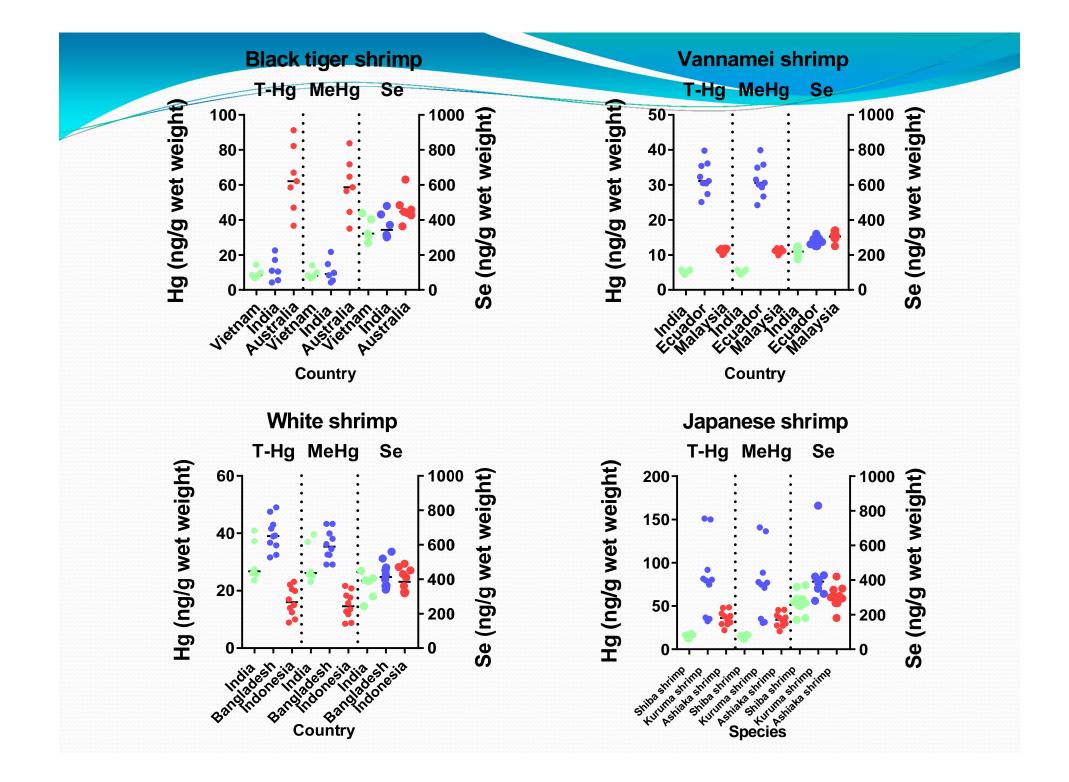
Summary

- . We have developed a simpler method for determining the T-Hg and MeHg concentrations in common biological samples by using MIBK in the degreasing step.
- 2. The advantages of this method are:
- ① a single apparatus is used for determining both T-Hg and MeHg
- ② both T-Hg and MeHg can be measured using the same biological sample in two consecutive steps
- ③ only one standard solution needs to be prepared for T-Hg and MeHg in each experiment. Both T-Hg and MeHg can be analyzed using a commercial mercury standard solution (1000 ppm HgCl₂), which has the stability required for a calibration curve
- ④ the protocol is easy and cost-effective compared with other methods such as GC-ICP-MS (gas chromatography-inductively coupled plasma/mass spectrometry) or LC-ICP-MS (liquid chromatography-inductively coupled plasma/mass spectrometry)

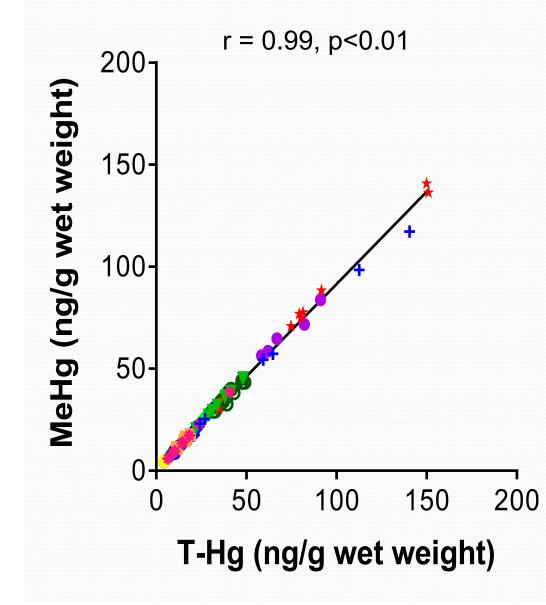
This method will be useful for the routine analysis of T-Hg and MeHg in a large number of biological samples such as the tissues of seafood.

2. Applying this method to determine T-Hg and MeHg in seafood for assessing MeHg exposure in humans

Background:

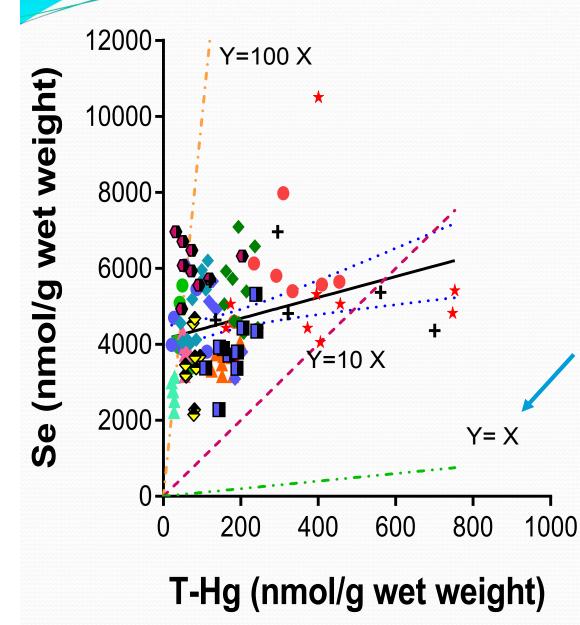

- Regarding shrimp, Japan is one of its largest consumers and its second largest importer in the world (FAO, 2016). However, little information is available on the Hg and Se concentrations in commercial shrimp in Japan.
- 2 Se is known to play an important role in the possible antagonistic effects on Hg toxicity.

> Purpose:

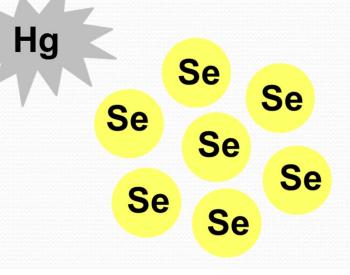

We aim to determine the concentrations of T-Hg, MeHg and Se in the muscles of several species of commercial shrimp available in Kumamoto and Kagoshima prefectures of Japan so that we obtain information for assessing the health risk from MeHg exposure.

Sample collection and preparation

ry N	Country	Scientific name	Species
m 5	Vietnam		
6	India	Penaeus monodon	Black tiger shrimp
lia 7	Australia		
6	India		
or 9	Ecuador	Litopenaeus vannamei	Vannamei shrimp
sia 10	Malaysia		
6	India		
adesh 10	Banglades		White shrimp
esia 10	Indonesia	r endeus mergulensis	
10	Japan	Metapenaeus joyneri	Shiba shrimp
10	Japan	Marsupenaeus japonicus	Kuruma shrimp
10	Japan	Penaeus semisulcatus	Ashiaka shrimp
tina 9	Argentina	Pleoticus muelleri	Red shrimp
esia 6	Indonesia	Penaeus semisulcatus	Irian tiger shrimp
e t	Bangla Indone Japan Japan Japan Argen	Marsupenaeus japonicus Penaeus semisulcatus Pleoticus muelleri	Shiba shrimp Kuruma shrimp Ashiaka shrimp Red shrimp



Relationship between T-Hg and MeHg concentration in the muscles of shrimp marketed in Japan



The T-Hg and MeHg concentrations in the shrimp muscle showed a significant positive correlation (r=0.99, p<0.01). The proportion of MeHg as a percentage of T-Hg ranged from 90% to 99%.

Relationship between T-Hg and Se molar concentrations in the muscles of shrimp marketed in Japan

All data were above the line for Y (Se) = X (T-Hg), with the Se/Hg molar ratios being greater than one (16-106), indicating that Hg toxicity may decrease in the presence of relatively high concentrations of Se.

Summary

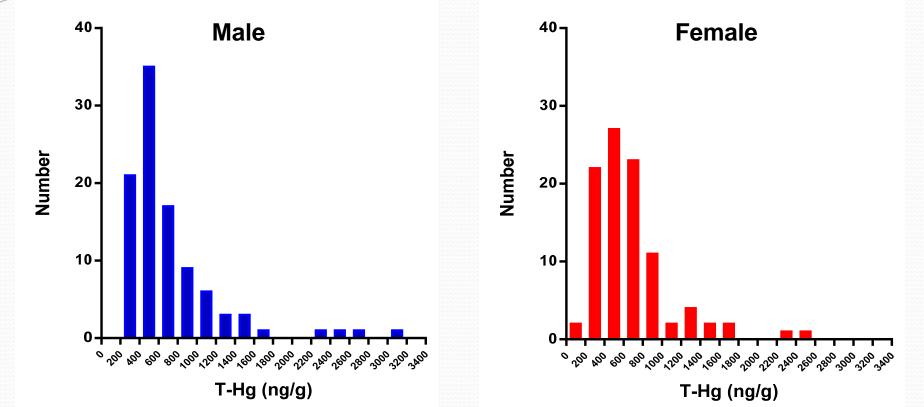
We applied the method we had developed to analyze T-Hg and MeHg levels in imported and domesticallyproduced commercial shrimp in Japan. The levels of T-Hg and MeHg levels in commercial shrimp in Japan were lower than the regulated Japanese level of 300 ng/g for MeHg in fish.

2. The average Se/Hg molar ratios in the muscle of commercial shrimp were relatively high in the range of 16-106.

This survey suggests that shrimp commercially available in Japan would not pose a particularly high risk to consumers regarding MeHg exposure. Van Anh Thi Hoang (from Vietnam; Prefectural University of Kumamoto)

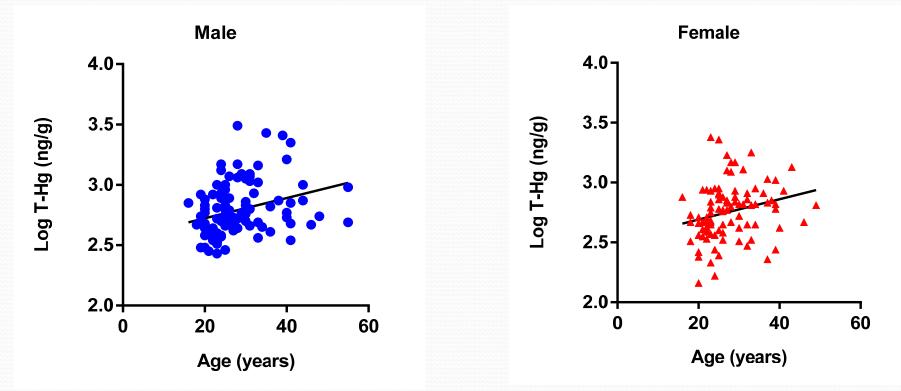
3. MeHg exposure assessment in humans: ~Epidemiological study in Hanoi, Vietnam~

> Background:


Fish consumption is increasing in Vietnam. However, little information is available on estimating the health risk of MeHg exposure through fish consumption in Vietnam.

> Purpose:

To examine the association between Hg levels in the hair and Se levels in the toenails of 196 Vietnamese people and their fish consumption in Hanoi, using a food frequency questionnaire (FFQ) and food model to obtain information pertinent to assessing the health risk from MeHg exposure.



Distribution histograms of Hg concentrations in the hair of males (n=99) and females (n=97)

The geometric means of Hg levels in the hair of males and females were 617 ng/g and 575 ng/g, respectively. Hg levels in the hair of 98% of the Vietnamese participants were lower than the provisional tolerable weekly intake for MeHg (JECFA). These values were lower than those in the hair of Japanese men (2.5 ppm=2500 ng/g) and women (1.6 ppm=1600 ng/g), respectively.

Relationship between age and T-Hg concentrations in the hair of males (n=99) and females (n=97)

- The Hg concentrations in the hair of the Vietnamese participants tended to increase with age in both male and female.
- Fish consumption varies with age, and older age groups of both males and females may eat more fish than younger age groups.

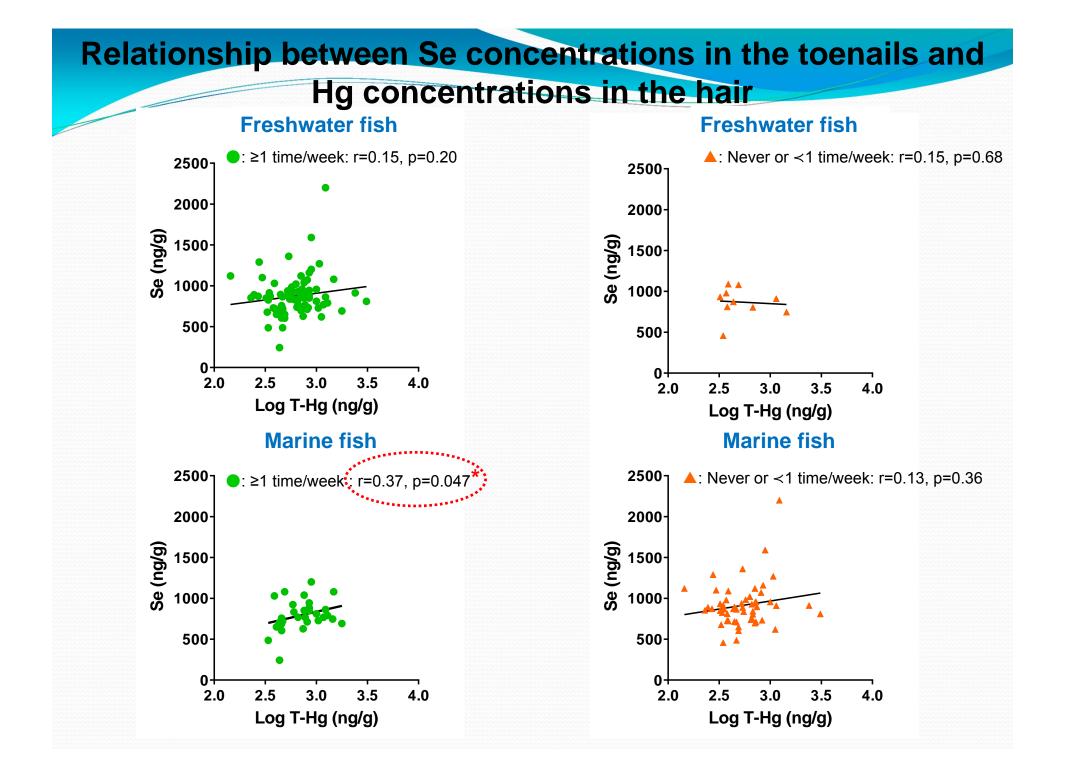
Age-adjusted geometric mean of Hg levels in the hair from males and females in relation to personal characteristics

maics and ici	nuice					натас	10131103		
	Male				Female				
Item	Ν	GM (ng/g)	95% CI	р	Ν	GM (ng/g)	95% CI	р	
Total	99	617	550–676		97	575	513–631		
Occupation State officer and state officer retired	23	603	501–692		38	562	479–646		
Lecturer and student	23	603	537–692		24	562	501–631		
Factory worker and house maker	18	617	562–692	0.534	20	575	501–646	0.009*	
Farmer and craftspeople	12	631	562–724		5	589	490–692		
Others	23	646	537–776		10	589	457–759		
Age									
16–24	40	490	372–646		39	479	355–661		
25–29	25	617	257–676		28	575	513–631	0.044	
30–39	21	759	589–955	0.051	25	676	479–955	0.011*	
40–55	13	933	575–1479		5	794	427–1514		
Education									
Less than high school	13	617	490–794		6	525	372–741		
High school	19	617	550–708	0.356	15	550	468–646	0.896	
Degree/diploma	67	617	550–692		76	575	513–646		

Age-adjusted geometric mean of Hg levels in the hair from males and females in relation to personal characteristics

ltom	Male					F	emale	
Item -	Ν	GM (ng/g)	95% CI	р	Ν	GM (ng/g)	95% CI	р
Total	99	617	550–676		97	575	513–631	
Marital status								
Single	50	589	501–692	0.433	46	537	447–646	0.460
Married	49	646	550–759	0.433	51	589	501–708	0.400
Smoke								
Smoker	32	589	501–708	0.570	1	562	195–1585	N/A
Non-Smoker	67	631	562–708	0.070	96	562	513–631	1 1/7 (
Hair treatment								
Treatment	4	513	302–851	0.431	62	550	479–631	0.468
Non-treatment	95	631	562–692	0.431	35	603	501–708	0.400
Alcohol								
Drinker	84	617	550–692	0.844	11	457	339–631	0.158
Non-drinker	15	631	490–813	0.044	86	589	525–646	0.100
Eating out								
Less than 3 times/week	65	603	525–676	0 222	74	617	550–692	0.001*
3 or more than 3 times/week	34	661	562–794	0.322	23	437	355–537	0.001

Age-adjusted geometric mean of Hg levels in the hair of males(n=99) by frequency and amount of fish consumption


				Male		
	Item				P value	es for
	item	Ν	GM (ng/g)	95% CI	Hetero geneity	Trend
	Freshwater fish					
	Never or <1 time/week	16	513	417–617	**************************************	
	1–3 times/week	62	617	550–676	0.019*	0.028*
Frequency of	≥ 4 times/week	21	741	617–891		
consumption	Marine fish					
	Never or <1 time/week	69	589	525–661		
	1–3 times/week	24	676	589–776	0.163	0.117
	≥ 4 times/week	6	776	575– 1023		
	Freshwater fish					
	Never or < 50 g/time	25	617	513–759	0.963	
Amount of	≥ 50 g/time	74	617	550–692		
consumption	Marine fish					
	Never or < 50 g/time	59	603	537–692	0.642	
	≥ 50 g/time	40	631	550–741		

Age-adjusted geometric mean of Hg levels in the hair of females (n=97) by frequency and amount of fish consumption

				Female	
	Item				P values for
	item			95% CI	Hetero geneity
	Freshwater fish				
	Never or <1 time/week	7	417	324–537	and a second and a s
	1–3 times/week	70	550	490–603	0.027* 0.009*
Frequency of	≥ 4 times/week	20	724	589–871	***************************************
consumption	Marine fish				
	Never or <1 time/week	58	525	457–603	
	1–3 times/week	36	631	537–724	0.017* 0.062
	≥ 4 times/week	3	759	550–1023	*********
	Freshwater fish				
	Never or < 50 g/time	14	427	324–562	0.022*
Amount of	≥ 50 g/time	83	603	537–661	**************************************
consumption	Marine fish				
	Never or < 50 g/time	50	513	437–589	0.033*
	≥ 50 g/time	47	631	550–741	*****

Age-adjusted geometric mean of Hg levels in the hair of subjects with a frequency of marine fish consumption of never or <one/week

				Male		
	Item				P values	s for
		Ν	GM** (ng/g)	95% CI	Heterogeneity	r trend
	Freshwater fish					
Frequency of	Never or <1 time/week	13	513	407–646		
consumption	1–3 times/week	45	589	525–661	0.218	0.180
	≥ 4 times/week	11	676	537–851		
	Freshwater fish					
Amount of	Never or < 50 g/time	18	617	501–776		
consumption	≥ 50 g/time	51	575	501–646	0.507	
				Female		
	Item				P values	s for
		Ν	GM** (ng/g)	95% CI	Heterogeneity	trend
	Freshwater fish					
Frequency of	Never or <1 time/week	7	380	282–501		
consumption	1–3 times/week	39	501	447–575	0.016*	0.015*
	≥ 4 times/week	12	676	525-871	**********	*********
	Freshwater fish					
Amount of	Never or < 50 g/time	11	417	302–562		
consumption	≥ 50 g/time	47	550	468–631	0.098	

Fish species commonly consumed by males and females in Hanoi, Vietnam

Species		Scientific name		Male		male	Hg levels
				%	Ν	%	(WHO, 2010)
	Total		93	100	96	100	
Freshwate	r Tilapia	Oreochromis mosambicus	72	77.4	76	79.2	<0.1 ppm
fish	Common car	pCyprinus carpio Linnaeus	71	76.3	70	72.9	0.1-0.5 ppm
	Roho labeo	Labeo rohita	51	54.8	53	55.2	<0.1 ppm
	Total		56	100	63	100	
	Mackerel	Scomberomorus maculatus	38	67.9	39	61.9	<0.1 ppm
Marine fish	Scad	Decapterus	22	39.3	25	39.7	<0.1 ppm
	Salmon	Oncorhynchus spp.	17	30.4	16	25.4	<0.1 ppm
	Tuna	Thunnini	13	23.2	8	12.7	0.1-1.3 ppm ^a
	Basa	Pangasius bocourti	9	16.1	20	31.7	<0.1 ppm

^a Ministry of Health, Labour and Welfare, 2003

Summary

- . The geometric mean of Hg levels in the hair of males and females was 617 ng/g and 575 ng/g, respectively.
- The Hg concentrations in hair of the Vietnamese participants tended to increase with age in both males and females.
 Fish consumption varies with age: older age groups of both males and

fish consumption varies with age: older age groups of both males and females may eat more fish than the younger age groups.

- 3. A significant difference in the age-adjusted geometric mean of Hg levels in hair from females were related to the frequency of freshwater fish consumption.
- 4. Hg levels in hair and Se levels in toenails increased with increased frequency of marine fish consumption, indicating that the significant positive correlation between hair Hg levels and toenail Se levels may be related to the consumption of marine fish.

This is the first cross-sectional study to investigate the association between hair Hg levels and fish consumption in Vietnam. These findings provide valuable information for future assessments of the health risk of MeHg exposure through fish consumption in Vietnam.

Future studies

Encouraging the distribution of this analytical method to determine Hg concentration in food and human samples in Vietnam.

- 2. An epidemiological study on MeHg exposure through seafood consumption, especially in susceptible population groups such as unborn children and young children in Vietnam.
- Contributing to providing guidance on fish and seafood consumption for assessing the risk of MeHg exposure to women of childbearing age in Vietnam.

-Hg MeHq

Mercury concentrations in canned fish

marketed in Hanoi, Vietnam

	Company	T-Hg	MeHg	MeHg/T-Hg
Туре	Company	(ng/g wet weight)	(ng/g wet weight)	(%)
Sardines in tomato sauce	(a)	7.1	6.8	95.8
Sardines in tomato sauce	(b)	5.1	5.1	100
Mackerel in tomato sauce	(C)	8.1	8.1	100
Tuna in oil	(d)	76.5	76.1	99.5
Tuna in oil	(e)	54.4	52.9	97.2
Yellowfin tuna chunks in vegetable oil	(f)	622.9	589.5	94.6
Light tuna chunks in oil	(g)	63.2	62.5	98.9
Tuna in vegetable oil	(h)	29.7	29.6	99.7
Tuna chunks in brine	(i)	78.3	76.1	97.2

n=1 for each type of canned fish examined