Dr. Masaaki Nakamura

○アブストラクトデータ

Methylmercury exposure and neurological outcomes in Taiji, the birthplace of traditional whaling in Japan

Masaaki Nakamura, Ken-ya Murata, Ichiro Nakanishi, Akira Yasutake, Noriyuki Hachiya, Ken-ichiro Miyamoto, Mineshi Sakamoto, Fusako Usuki, Tomoyoshi Kondo

Methylmercury (MeHg) exposure occurs primarily through the consumption of fish, but the environmental threat to human health is poorly understood. Taiji is famous as the birthplace of traditional whaling in Japan, and the geometric mean hair mercury level is reportedly higher than that in the general Japanese population. However, the investigation of the health impact associated with MeHg in Taiji residents has not been performed so far. Our study aimed to determine whether there were undesirable health consequences (especially neurological abnormalities) with MeHg exposure in Taiji. After a preceding hair mercury survey (724 residents) to assess MeHg exposure, the subjects of the present study (194 residents) underwent a neurological examination. Audiometry, MRI, and EMG were performed for the subjects with hearing impairment or sensory disturbance. The geometric mean of hair mercury of the male and female subjects was 9.97 and 6.19 ppm in the preceding hair mercury survey and 17.2 and 12.1 ppm in the present study. Hair mercury levels of 2.2% subjects (preceding hair mercury survey) and 6.2% subjects (present study) were higher than 50 ppm, the level for NOAEL set by WHO. No subject presented with the perioral sensory disturbance which was often present in MeHg poisoning. Taken together with the neurological findings and laboratory results of MRI and EMG, sensory disturbance was diagnosed as follows: cervical spondylosis (3 subjects), cervical spinal canal stenosis (3 subjects), lumbar spondylosis (2 subjects), lumbar spinal canal stenosis (3 subjects), lumbar disk herniation (one subject), carpal tunnel syndrome (3 subjects), ulnar palsy (one subject), polyneuropathy (5 subjects), carpal tunnel syndrome (3 subjects), ulnar palsy (one subject), sciatic pain (one subject), and tarsal tunnel syndrome (one subject). Two among 12 subjects beyond 50 ppm showed a decrease of vibratory sensation, but ataxia and abnormality of combined sensation (two-point discrimination, graphesthesia, and stereognostic sense), which was often present in MeHg poisoning, were not seen. There was no dose-response relationship between hair mercury levels and all neurological signs, although a dose-response relationship was observed between age and some neurological signs. These findings suggested that the apparent adverse effects of MeHg exposure on neurological symptoms may not follow MeHg exposure in Taiji. A future study is warranted to determine the reason why clear undesirable health consequences were not seen despite the high MeHg exposure.

○発表データ

Je.

Methylmercury exposure and neurological outcomes in Taiji, the birthplace of traditional whaling in Japan

National Institute for Minamata Disease Masaaki Nakamura

High mercury levels in hair samples from residents of Taiji, a Japanese whaling town Tetsuya Endo**, Koichi Haraguchi^b "Analy dynamismin down, Jimbi Borni Innent of Halan (1972 Julian Talen, Janashi 08 - 973, June "Mark Japa", Amanani Gonz, Ji Hugan Col, Mandrá, Alama Talen, Janashi 08 - 973, June

.....

A R T I C LE I N F O Krywest: Todal menury Matrix Marchai neeury Matrix Short danee point whale (Cablorphate marrorhythcha) Newtythou

The aim of this study is to investigate health effects of MeHg on adults.

Summary of Neurologic di	agnos	sis 🔪
clinical diagnosis	N	
polyneuropathy	13	
multiple cerebral infarction	2	
late effects of cerebral infarction	1	
parkinsonism	1	
postural tremor	4	
cervical spondylosis	5	
cervical spinal canal stenosis	4	
cervical disc herniation	1	
thoracic outlet syndrome	1	
carpal tunnel syndrome	4	
ulnar palsy	1	
birth palsy	1	
lumbar spinal canal stenosis	3	
lumbar spondylosis	2	
lumbar disk herniation	2	
sciatic pain	1	
tarsal tunnel syndrome	1	
Minamata disease (MeHg poisoning)	0	

Methods- 2

- 3) Analysis of health consequence by MeHg
 - a) Clinical evaluation
 - b) Associations between the neurological outcomes and hair mercury concentration, age and gender.
 - c) Detailed assessment of 12 residents whose mercury concentrations were over 50 ppm, the level for NOAEL set by WHO

Gender	male	female	total
V	344	380	724
Age (years)			
Min	6	6	6
Max	88	92	92
Arithmetic mean	57.5	56.4	56.9
Hair mercury (µg/g)			
Min	0.6	0.7	0.6
25 Percentile	5.1	3.5	4.0
Median	10.6	5.9	7.7
75 Percentile	19.5	11.0	14.6
Max	101.9	73.1	101.9
Geometric mean	10.0	6.2	7.8
Hair mercury ≧ 50 µg/g (N)	14	2	16

Gender	male	female	total
N	117	77	194
Age (years)			
Min	20	24	20
Max	85	79	85
Arithmetic mean	56.7	59.5	57.8
Hair mercury (µg/g)			
Min	1.1	2.1	1.1
25 Percentile	11.1	5.9	7.9
Median	18.7	15.1	17.8
75 Percentile	32.7	24.3	28.7
Max	101.9	73.1	101.9
Geometric mean	17.2	12.1	14.9
Hair mercury ≧ 50 μg/g (N)	10	2	12

Associations of neurologic findings with hair mercury concentrations, age and gender al if calculated) hair mercury concentration iog (ppm) 1.22 (0.22, 6.85 age os (1.00, 56 (0.4 1.2 0.15, groad o 3.26) logisti regressi logisti regressi logisti logisti reas 7 (0.77, 29 1.31) 2.63 (0.031, 22 16.5 (0.22, 125 logist regress logist regress logist 3.22 (0.03 613) 0.67 (0.07, 6.51 regreation logistic regreation logistic regreation logistic regreation 4.57 (0.14, 172 1.97 (0.14, 27. 2.05 (0.58, 7.2 8.15) 0.70 (0.3) 26 (-0.57, 1.0 0.26 -0.009 (-0 lincar -0.001 logistic logistic logistic 0.66 (0.15 2.55 (0.25, 25.9 -0.069 (-0 1.87 (0.53, 6.59 1.97)

	Range of hair mercury concentration of four quartiles
1	1.1 ppm to 7.9 ppm
2	7.9 ppm to 17.8 ppm
3	17.8 ppm to 28.7 ppm
4	28.7 ppm to 101.9 ppm

Associations of neurologic findings with hair mercury concentrations, age and gender-2

Associations of neurologic findings with hair mercury concentrations, age and gender-3											
			Adjunted odds ratios or adjunted regression coefficients (95% confidence interval if calculated)				upper limb	logistic regression logistic	1.05 (1.02, 1.05)	3.21 (1.40, 7.35) == 1.72 (0.79,	0.42 (0.09, 2.10)
Neurolog	ie findings	analysis	age	male (femás as a referent)	hair morcury concentration • 50 ppm (2) 50 ppm as a	reflex	Babindd	regression logistic regression logistic	1.12 (0.99, 1.29)	2.76) 0.56 (0.07, 4.82) 0.56 (0.07,	4.99) 3.03x10 ⁴ (·)
crantal nerve	sensorineural hearing loss	logistic regression	1.05 (1.00, 1.10) *	1.63 (0.66, 5.76)	referent) 7.50 (1.55, 32.29) ==	efferent) 50 (1.55, 2.39) **		regreation logistic regreation	1.07 (1.02, 1.12)	4.57) 1.62 (0.55, 4.52)	0.66 (0.05, 5.47)
muscular	upper limb	logistic regression	0.97 (0.91, 1.04)	0.22 (0.02, 2.30)	6.69x10 ⁴ (•)	gain e	ensation	logistic regression	1.06 (1.02, 1.10)	1.10 (0.42, 2.94)	0.55 (0.07, 4.61)
vesknes	lover limb	logistic regression	1.06 (0.94, 1.14)	0.15 (0.01, 1.60)	3.69x10 ⁴ (•)		right upper	linear retreation	-0.093 (-0.12,-	0.16 (-0.76, 1.02)	-0.10 (-1.59, 1.66)
tremor	postural	logistic regression	1.12 (1.04, 1.20) **	4.79)	6.97x10 ⁴ (•)		left upper	lincar	-0.056 (-0.11, -	-0.099 (-0.91,	-0.33 (-1.96,
	diadocho - kinedia finece-to-	regreation lociation	1.43)*	1.70 (0.15, 19.3)	1.98x10 ⁴ (·)	stance)	right lower	linear	-0.15 (-0.18, -	0.33 (-0.67,	-0.56 (-0.66,
coordinated movement	nost tost	regression logistic	1.39)	4.65 (0.52,	9.0010 ⁴ (c)		limb (c) left lover	lincar	-0.15 (-0.15, -	-0.002 (-0.77,	0.76)
	knot tapping	logistic regression	1.22) 44 1.11 (0.99, 1.24)	41.7) 4.76x10 ⁷ (-)	1.40x10 ⁴ (•)		right Index	incar	0.019 (0.002	0.77)	-0.20 (-1.24
	right fast 🔹	logistic regression	1.13 (1.02, 1.24)*	1.32 (0.022, 7.94)	1.20x10 ⁴ (•)	two-point discrimination	finger (mm)	regreation	0.037) *	0.18)	0.54)
one foot	tight faz - 15s loft foot	logistic regression logistic	1.11 (1.07, 1.16)	0.51 (0.34, 1.92) 0.96 (0.23,	1.02 (0.24, 4.25)		finter finger (mm)	linear regreation	0.026 (0.006, 0.066) *	-0.22 (-0.82, 0.39)	-0.05 (-1.29, 1.13)
	+ Se left foot	regreation logistic	1.19) ***	4.05)	1.04x10* (-) 0.55 (0.20,	manhambar	right pain (14)	linear regression	-0.001 (-0.002, 0.001)	-0.005 (-0.013 0.021)	0.026 (-0.050, 0.095)
5mg	a 15a o gait	logistic	1.10 (0.99,	2.40)	2.54) 10.21 (1.29,		(14)	tinear regression	-0.001 (-0.005, 0.001)	0.035 (-0.022, 0.095)	0.035 (-0.052, 0.159)
tando	m gait	logistic regression	1.22) 1.31 (1.03, 1.62) *	19.3) 2.22x10 [°] (•)	1.55k10 ⁴ (·)	forcog	odia (73)	regreation	0.000)	0.053+0.005)	0.079)

Conclusion

- 1. The hair mercury level in Taiji residents was markedly higher than that in other areas of Japan.
- Although detailed clinical neurological examinations showed several clinical findings in some residents, they were not due to MeHg exposure but other neurological causes.
- Multivariable analytical study demonstrated that there were no significant correlations between hair mercury concentrations and neurological outcomes, while some of the findings were correlated with ages.

F	hai	Asso ir me	ociati rcur	ons o y con	f neurol centrati	ogic ons, a	findii ge ai	ngs v nd ge	vith nder	-2	
		Aqua		d odds ratios or adjusted regression coefficients			upper limb	logistic regression	1.05 (0.96, 1.05)	4.57 (0.59, 23.6)	1.65 (0.33, 6.31
Neurologi	c findings	analysis	,		hair mercury		lower limb	logistic regression	1.05 (1.02, 1.12) ***	1.19 (0.26, 2.96)	0.94 (0.26, 3.34
			Age .	male (female as a referent)	concentration Quartile 6 (Quartle 1 as a referent)	reflex	Rabindo	logistic regression	1.03 (0.53, 1.25)	9.38x10 ⁴ (•)	9.11x10 ⁴ (·)
cranial nerve	acneoringural hearing loss	logistic regression	1.05 (0.98, 1.12)	5.80 (0.57, 59.2	0.45 (0.07, 2.95)		Chaddock	logistic regression	1.03 (0.83, 1.25)	9.38x10 ⁴ (•)	9.11x10 ⁴ (-)
manufar	upper limb	logistic regression	0.91 (0.77, 1.05)	2.96x10 ⁴ (-)	5.23x10 ⁴ (-)	touch at	nation	logistic regression	1.06 (0.95, 1.11)	0.55 (0.15, 4.79)	0.92 (0.15, 5.71
weakness	lover limb	logistic regression	1.02 (0.87, 1.19)	0.25 (0.02, 4.52	5.91x10 ⁷ (-)	gain an	vation	logistic regression	1.05 (0.97, 1.11)	0.51 (0.10, 2.54)	1.51(0.26, 8.79
tramor	penural	logistic regression	1.15 (0.96, 1.38)	0.17 (0.02, 1.76	1.37x10 ⁴ (•)		night upper Jush (0)	linear	-0.076 (-0.12	-0.015 (-1.35	-0.95 (-2.46,
	diadocho - ideoda	logistic regression	1.15 (0.59, 1.57)	1.25x10 ⁷ (-)	1.22x10 ⁷ (·)		left upper	linear	-0.051 (-0.12	0.21 (-1.41,	-0.40 (+1.75,
coordinated	finger-to- nose test	logistic regression	1.03 (0.63, 1.25)	9.35x10 ⁴ (-)	9.11x10 ⁴ (-)	vibratory acres	night lower	Zincar	-0.15 (-0.19,	0.62 (-0.59,	-0.54 (-2.21,
movement	heel-knee test	logistic regression	1.09 (0.95, 1.22)	1.23x10 ⁶ (•)	0.55 (0.04, 7.55)		Zineb (a)	regression	-0.11)	1.56)	0.53)
	knee tapping	logistic regression	1.12 (0.92, 1.25)	2.68x10 ⁷ (-)	1.60x10 ⁷ (-)		limb (d)	regreation	-0.10) ****	1.49)	0.59)
	right foot + 51	logistic regression	1.42 (1.03, 1.98) *	1.53x10 ⁴ (-)	0.50 (0.00, \$2.0)	-	right index finger (mm)	linear regression	0.005 (-0.011 0.032)	-0.42 (-1.14, 0.29)	0.50 (+0.30, 1.31)
one foot	right foot # 15t	logistic regression	1.21 (1.05, 1.25) ==	1.15 (0.21, 6.34	2.60 (0.35, 16.6)	discrimination	left index finger (mm)	linear regression	0.017 (-0.015 0.065)	-0.45 (-1.54, 0.45)	0.36 (-0.66, 1.35)
danding	left foot + St	logistic regression	1.03x10 ¹⁰ (•)	7.62x10 ⁴ (-)	8.12x10 ⁸¹ (-)		right palm.	linear regression	0.000 (-0.003	-0.012 (-	-0.013 (-0.064, 0.035)
	A 15t	logistic regression	1.25 (1.05,	1.15 (0.21, 6.36	2.60 (0.25, 16.6)	graphenhosia	left galm	linear	-0.001 (-	0.010 (-0.06	-0.050 (-0.14,
dimp1	e gait	logistic regression	1.05 (0.91, 1.15)	2.97x10 ⁷ (·)	2.53x10 ⁷ (-)		(/4)	regreation	0.004, 0.002	0.057)	0.037)
tander	n gait	logistic	1.22 (0.94, 1.58)	1.97x10 ⁷ (•)	2.23x10 ⁷ (-)	storcognosis (/3)		regreation	NA.	NA.	NA."

Summary of neurological findings of 12 residents whose hair mercury concentrations were over 50 ppm

Ne	105	hair moreury (ppm)	wide-based gait	sensorineural hearing loss	corebellar sign	sensory disturbance and two-point discrimination (mm)
1	м	50.4	Θ	Θ	Θ	(-) two-point discrimination: 6.0, 6.0
2	м	50.6	mild (+)	Θ	Θ	reduced vibratory sense of the lower limbs: 5s, 4s two-point discrimination: 2.0, 2.6
3	м	54.0	Θ	left (+)	Θ	(-) two-goint discrimination: 1.5, 1.5
4	м	59.2	(+)	(+)	Θ	(e) two-point discrimination: 2.1, 2.1
5	м	59.2	Θ	Θ	Θ	(r) two-point discrimination: 4.0, 5.0
6	м	65.0	Θ	Θ	Θ	(-) two-goint discrimination: 2.5, 3.3
7	м	66.2	Θ	(+)	Θ	(-) two-goint discrimination: 5.0, 4.2
8	м	68.4	Θ	(+)	(-)	dysesthesis (left L5, S1) two-point discrimination: 3.2, 3.8
9	F	72.2	Θ	Θ	Θ	reduced vibratory sense of the lower limbs: 5s, 5s two-point discrimination: 5.0, 5.0
10	F	73.1	Θ	Θ	Θ	(-) two-point discrimination: 3.8, 3.8
11	м	82.6	Θ	Θ	Θ	(-) two-point discrimination: 2.6, 2.2
12	м	101.9	Θ	Θ	Θ	reduced vibratory sense of the lower limbs: 6s, 7s two-point discrimination: 2.7, 3.5

Collaborators

- Ken-ya Murata, Ichiro Nakanishi, Tomoyoshi Kondo (Wakayama Medical University)
- Noriyuki Hachiya, Ken-ichiro Miyamoto, Fusako Usuki, Mineshi Sakamoto (National Institute for Minamata Disease)
- Akira Yasutake (Kumamoto University)