

NIMD Forum 2014

"Evaluation of methylmercury exposure and health effects in human"

- **Date** : October 18, 2014
- Venue : Minamata Disease Archives National Institute for Minamata Disease Minamata City, Kumamoto, Japan

15:15	- 15:25	Opening remarks: Minoru Koga
I		(Prefectural University of Kumamoto, Japan / President)
Sea	ssion	Chair: Laurie H.M Chan (University of Ottawa, Canada / Professor)
		Mineshi Sakamoto (NIMD, Japan / Director, Department of Environmental
		Science and Epidemiology)
		Moderator of secretariat: Megumi Yamamoto(NIMD, Japan / Chief, Department of
L		Basic Medical Science)
15:25	- 15:45	Mineshi Sakamoto
		(NIMD, Japan / Director, Department of Environmental Science and Epidemiology)
		Significance of fingernail and toenail mercury concentrations as biomarkers for
		prenatal methylmercury exposure
15:45	15:55	Greeting messages : Shigeo Kitamura
		(State Minister of the Environment, Japan)
15:55	- 16:15	Hiroshi Satoh
		(Food Safety Commission of Japan)
		Seafood for thought: fish-eating and methylmercury in fish
16:15	- 16:35	Milena Horvat
		(Jozef Stefan Institute, Ljubljana , Slovenia / Head, Department of Environmental
		Sciences)
		Evaluation of methylmercury exposure and health effects in the Mediterranean
		population
16:35	- 16:55	Laurie H.M. Chan
		(University of Ottawa, Canada / Professor)
		Relationship Between Paraoxonase-1 (PON1) and Metal Concentrations in the Whole
		Blood of Inuit in Canada
16:55	- 17:15	Masaaki Nakamura
		(NIMD, Japan / Chief , Department of Clinical Medicine)
		Methylmercury exposure and neurological outcomes by ingesting whale mea
17:15	- 17:35	Anna Choi
		(Harvard University, USA / Research Scientist)
		Negative Confounding by Essential Fatty Acids in Methylmercury Neurotoxicity
		Associations
17:35	- 17:45	Summary: Laurie H.M Chan (University of Ottawa, Canada)
		Mineshi Sakamoto (NIMD, Japan)
17:45	- 17:55	Closing Remarks: Hiroshi Noda (NIMD, Director General)
1		

Program

State Minister's Greetings

Good afternoon. I'm Shigeo Kitamura, State Minister for the Environment. I've come today to Minamata, where the Minamata Convention was adopted, to offer a few words of encouragement to you, the researchers at the frontlines of research into mercury in Japan and the world.

The United Nations Environmental Programme, or UNEP, acts as the provisional secretariat for the Minamata Convention on Mercury. It warns that mercury continues to accumulate on the earth's

surface as a result of human industrial activity and is reaching levels that will impact human health and the environment on a global scale. I believe that now is the time to advance global strategies to prevent this problem from being passed on as a negative legacy to future generations.

To eliminate the damage from mercury pollution worldwide, the Japanese Government and the Ministry of the Environment are determined to go beyond the minimum measures sought under the Convention. We are stepping up our efforts, for example through aid for developing countries that makes use of Japan's excellent mercury control technologies.

I am confident that the research results of all of you attending this NIMD Forum at the National Institute for Minamata Disease today will play a great role in the resolution of this worldwide problem.

Lastly, I hope that you will continue your tremendous efforts in this difficult struggle, for the future of Japan and the world.

Thank you very much.

Shigeo Kitamura State Minister of the Environment, Japan

Significance of fingernail and toenail mercury concentrations as biomarkers for prenatal methylmercury exposure

Mineshi Sakamotoa*, Hing Man Chan, José L Domingo, Ricardo B Oliveira, Shoichi Kawakami, Katsuyuki Murata

*Department of Environmental Sciences and Epidemiology, National Institute for Minamata Disease, Minamata, Japan

Objective: To investigate the appropriateness of mercury (Hg) concentrations in fingernails and toenails at parturition for detecting prenatal exposure to methylmercury (MeHg).

Methods: Total Hg concentrations were measured in 54 paired samples of fingernails, toenails, maternal blood, and maternal hair (1cm incremental segments from the scalp toward the tip) collected at 4th weeks of (early) pregnancy, and the same specimens and cord blood collected at parturition.

Results: Strong correlations were observed between Hg concentrations in fingernails and toenails at early pregnancy (r=0.923, p<0.01) and at parturition (r=0.895, p<0.01). At early pregnancy, Hg concentrations in fingernails and toenails showed the strongest correlations with those in hair 3–4 cm from the scalp. Mercury concentrations in fingernails and toenails at parturition represented strong correlations with those in cord blood (r=0.803, p<0.01 for fingernails and r=0.792, p<0.01 for toenails, respectively). At parturition, Hg concentrations in fingernails had the highest correlation with those in hair 0–1 cm from the scalp (r=0.918, p<0.01), and Hg concentrations in toenails showed the highest correlation with those in hair at 2–3 cm from the scalp (r=0.872, p<0.01). In addition, the correlation coefficients of Hg concentrations between nails and hair segments at parturition were equally high among hair at 0-1, 1-2, and 2-3 cm from the scalp.

Conclusion: This is the first comprehensive study investigating the appropriateness of using Hg concentrations in fingernails and toenails as biomarkers for maternal and fetal MeHg exposure at parturition, compared with those at early pregnancy. Mercury in fingernails and toenails at early pregnancy reflected the maternal Hg body burden level approximately 5 months retroactively. At parturition, Hg levels in fingernails and toenails also showed strong correlations with those in cord blood. In addition, Hg levels in fingernails and toenails at parturition reflected MeHg levels throughout third-trimester of gestation. These results suggest that fingernails and toenails at parturition are useful biomarkers for prenatal MeHg exposure for mothers and fetuses, especially during the third-trimester of gestation.

Significance of fingernall and toenail mercury concentrations at parturition as a biomarker of MeHg exposure to fetus

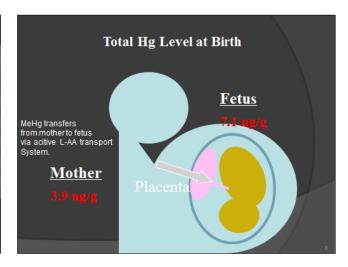
Mineshi Sakamoto*, Hing Man Chan, Jose L Domingo, Ricardo B Oliveira, Shoichi Kawakami and Katsuyuki Murata

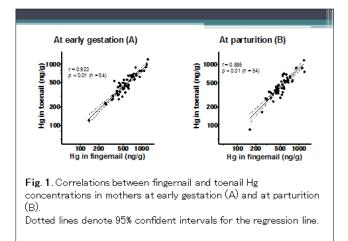
Background

- The target organ of MeHg exposure during gestation is the fetal brain, especially the developing brain at the 3rd trimester (<u>Rice and Barone, 2000</u>).
- For this reason, biomarkers reflecting the MeHg exposure level in the fetus during the 3rd trimester are very important to predict the effects of MeHg on child development.
- A number of studies have employed Hg concentrations in toenails and/or fingernails as biomarkers for MeHg exposure.
- However, the time-lag of the nail growth from the nail matrix to the nail free edge is not well specified in the above mentioned studies.
- Also, the significance of the nails for the assessment of the maternal and fetal MeHg exposure at the parturition has never been studied so far.

Objective

• To investigate the appropriateness of Hg concentrations in fingernails and toenails at parturition for detecting prenatal exposure to MeHg.


Materials and methods


- Total Hg concentrations were measured in 54 paired samples of fingernails, toenails, maternal blood, and maternal hair collected at 4th weeks of (early) pregnancy, and the same specimens and cord blood collected at parturition.
- Hair strings were cut into 1 cm incremental segments from the scalp toward the tip.

	At early gestation	At parturition			
Matemal blood	4.40(358-544)	3.89 (3.25- 4.69)**			
Cord blood		7.14 (6.02-9.38)**			
Fingernail	547(425-727)	504 (426-585)*			
Toenail	465(358-624)	427 (350-544)**			
Hairlength(cm)					
0-1	1268 (941-1798)	1 314 (1090-1709)			
1-2	1276 (928-1827)	1257 (1030-1540)			
2-3	1261 (885-1850)	1 243 (1019-1533)			
3-4	1244 (892-1922)	1252 (10451573)			
4-5	1234 (898-1844)	1 2 34 (1018-1605)			
5-6	1 215 (851-1840)	1241 (1032-1535)			
6-7	1194 (844-1686)	1 2 38 (1109-1622)			
7-8	1141 (844-1714)	1272 (1055-1622)			
8-9	1159 (845-1648)	1273 (1042-1744)			
5-9 1159 (245-1049) 1273 (10221744) The differences in Hg concentrations between paired samples were determined by paired test using logarithmically transferred Hg concentrations. Hg concentrations in maternal blood, ringer- and toenails at parturition were significantly (* p <0.05, ** p <0.01) lower than those at early gestation. Hg concentrations in cord blood was significantly (** p <0.01) higher than those in maternal blood at parturition.					

Table 2. Correlations among Hg concentrations (ng/g) in maternal blood, fingernail and toe nails and segmental hair at early gestation.					
	Correlation coefficient	S			
54 samples	Mother Blood	Fingernail	Toenail		
Maternal blood	1				
Fingernail	0.735	1			
Toenail	0.707	0.923	1		
Hair length (cm)					
0-1	0.661	0.787	0.711		
1-2	0.669	0.784	0.714		
2-3	0.630	0.780	0.706		
3-4	0.633	0.818	0.744		
4-5	0.599	0.813	0.733		
5-6	0.576	0.806	0.734		
6-7	0.545	0.779	0.718		
7-8	0.438	0.616	0.588		
8-9	0.468	0.692	0.643		
Correlation coefficients we	ere calculated using l	ogarithmically	ransferred		

Hg concentrations. All the correlation coefficients were statistically significant (p <0.01).

	Correlation coeffici	ents		
54 samples	Maternal blood	Cord Blood	Fingernail	Toenail
Maternalblood	1			
Cord Blood	0.878	1		
Fingernail	0.697	0.803	1	
Toenail	0.689	0.792	0.895	1
Hair length (cm)				
0-1	0.842	0.918	0.878	o.868
1-2	0.772	0.870	0.875	0.871
2-3	0.749	0.846	0.873	0.872
3-4	0.737	0.792	0.825	0.835
4-5	0.722	0.779	0.749	0.794
5-6	o.688	0.739	0.716	0.791
6-7	0.617	0.680	0.662	0.730
7-8	0.612	0.638	0.631	0.737
8-9	0.471	0.492	0.513	0.595

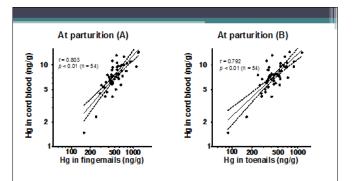
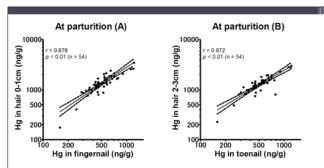
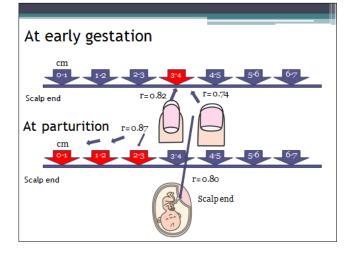



Fig. 2. Correlations between Hg concentrations in cord blood and those in fingernail (A) and toenails (B) and at parturition. Dotted lines denote 95% confident intervals for the regression line.

Fig. 3. Correlations between Hg concentrations in fingernail and maternal hair segment 0-1 cm from the scalp (A) and those between Hg concentrations between toenail and maternal hair segment 2-3 cm from the scalp (B) at parturition.

Dotted lines denote 95% confident intervals for the regression line.

Results


• Strong correlations were observed between Hg concentrations in fingernails and toenails at early pregnancy (r=0.923, p<0.01) and at parturition (r=0.895, p<0.01).

At early pregnancy

• Hg concentrations in fingernails and toenails showed the strongest correlations with those in hair segment 3-4 cm from the scalp (r=0.818 and r=0.747, p<0.01, respectively) among the 1 cm incremental hair segments.

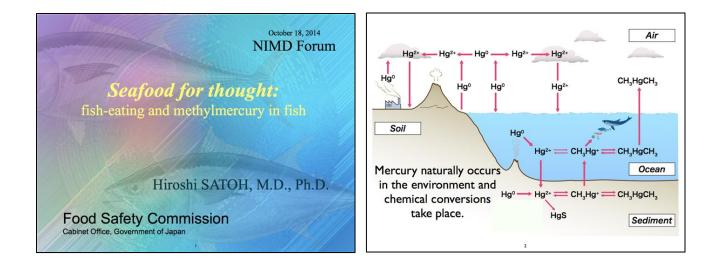
At parturition

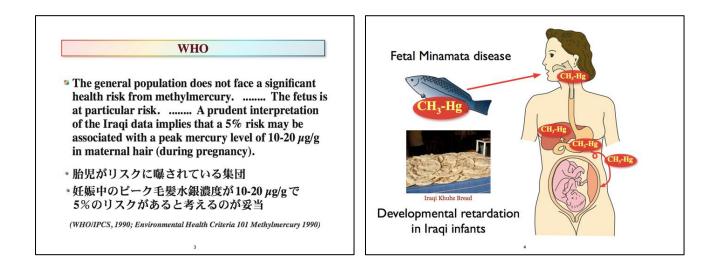
- Hg concentrations in fingernails (r=0.803, p<0.01) and to enails (r=0.792, <0.01) showed strong correlations with those in cord blood.
- Hg concentrations in fingernails had the highest correlation with those in hair 0-1 cm from the scalp (r=0.918, p<0.01), and Hg concentrations in toenails showed the highest correlation with those in hair at 2-3 cm from the scalp (r=0.872, p<0.01).
- * In addition, the correlation coefficients of Hg concentrations between nails and hair segments at parturition were equally high among hair at 0–1, 1–2, and 2–3 cm from the scalp.

Conclusion

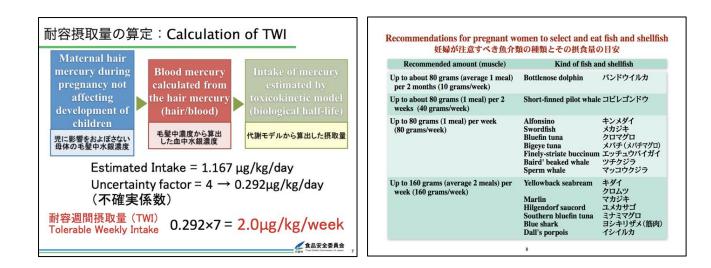
- This is the first comprehensive study investigating the appropriateness of using Hg concentrations in fingernails and toenails as biomarkers for maternal and fetal MeHg exposure at parturition, compared with those at early pregnancy.
- Both fingernails and toenails collected at parturition can be used as biomarkers for maternal and fetal MeHg exposure, throughout the 3rd trimester of pregnancy.

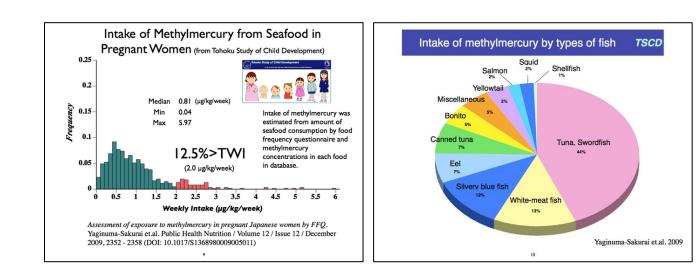
Seafood for thought: fish-eating and methylmercury in fish

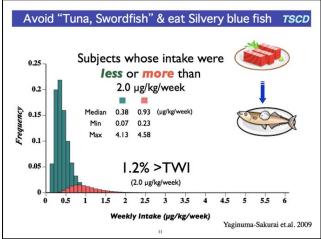

Hiroshi Satoh

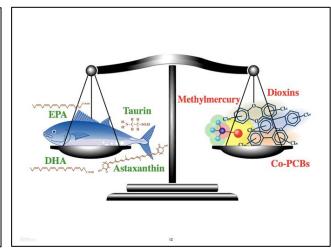

Food Safety Commission of Japan

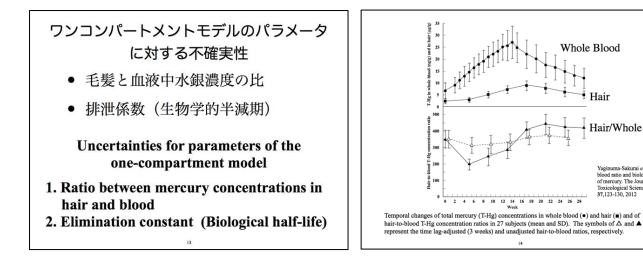
Mercury occurs ubiquitously in the environment. It has been used from the ancient age as well as lead and iron. Mercury and its compounds are classified into three chemical forms such as metallic (elemental) mercury, inorganic and organic mercury compounds. Metallic mercury is in liquid form at room temperature and generates mercury vapor, which exist in atmosphere. Mercury in the environment partially converted into methylmercury by micororganisms. Methylmercury is bio-concentrated and accumulated in large carnivore fish and sea mammals.


Major toxicity of methylmercury is manifested in the central nervous system (CNS) and the fetal CNS has been considered to be vulnerable from the observations in Minamata disease and Iraqi tragedy. Therefore, birth cohort studies have been conducted among the fish-eating populations with high methylmercury exposure.


Food Safety Commission (FSC) was established in 2003 as a risk assessment organization independent from risk management organizations. In 2005 FSC published "Food Safety Risk Assessment Related to Methylmercury in Seafood" and the tolerable weekly intake of 2 µg/kg bw/week (as Hg) was proposed for pregnant and potentially pregnant women, since fetuses are the high-risk group. The risk assessment report referred to the benefit of fish-eating. Following the risk assessment report, a risk management organization, Ministry of Health, Labour and Welfare, issued "Advice for Pregnant Women on Fish Consumption and Mercury" to avoid excessive methylmercury exposure during pregnancy. In the advice frequencies of consumption of high mercury content fish were shown to keep the methylmercury intake below the TWI.







Whole Blood

🗄 Hair

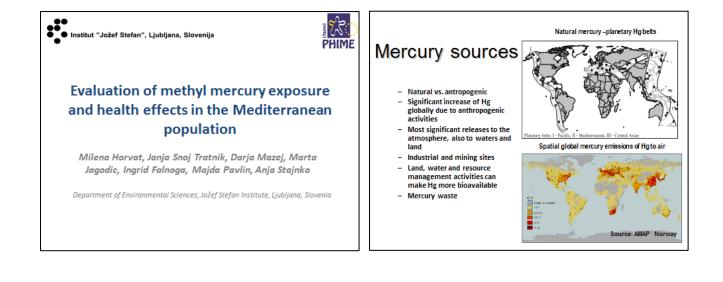
Hair/Whole Blood

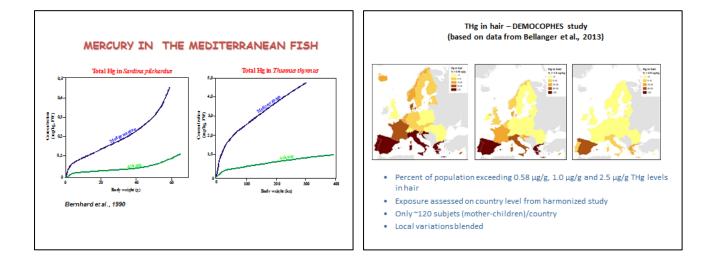
Yaginuma-Sakurai *et al.* Hair-to-blood ratio and biological half-life of mercury. The Journal of Toxicological Sciences **37**,123-130, 2012

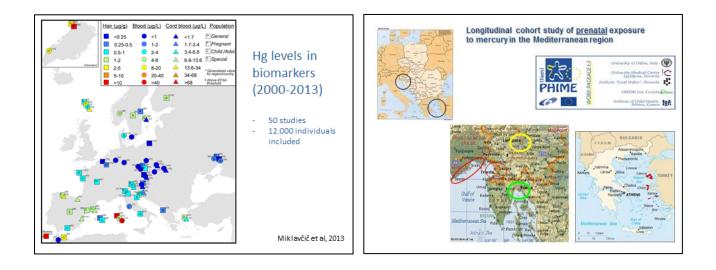
Evaluation of methylmercury exposure and health effects in the Mediterranean population

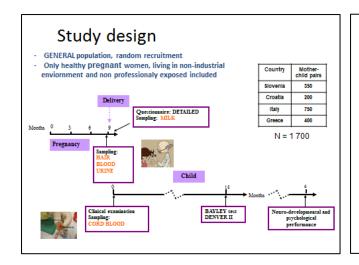
Milena Horvat*, Janja Snoj Tratnik, Darja Mazej, Marta Jagodic, Ingrid Falnoga, Majda Pavlin, Anja Stajnko

*Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia

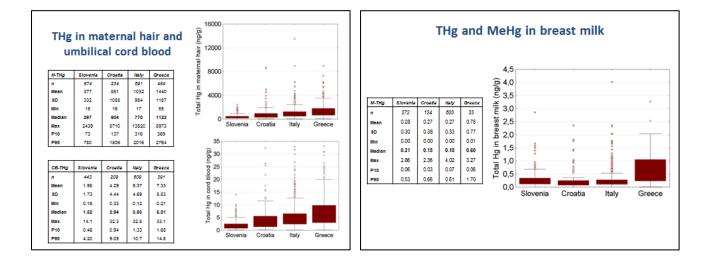

Objective: To investigate MeHg exposure, effects, and susceptibility in Mediterranean population in early life.

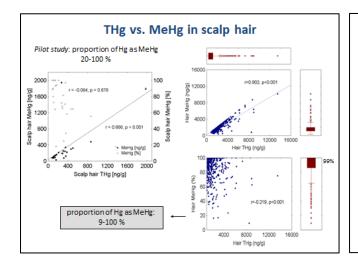

Methods: PHIME was the largest study ever conducted in the general European population on the impact of Hg through food consumption. It included 1700 mother – child pairs from Italy, Slovenia, Greece and Croatia. Children of the PHIME Mediterranean cohort were tested for neurodevelopment (Bayley III test) at 18 months of age. Mother hair, cord blood, cord tissue and meconium have been sampled at birth, breast milk and mother's hair 1 month after birth. Hair samples have been analysed for mercury, cord blood and breast milk for mercury (and MeHg), cadmium, lead and arsenic, as well as for essential elements (selenium, zinc, copper).

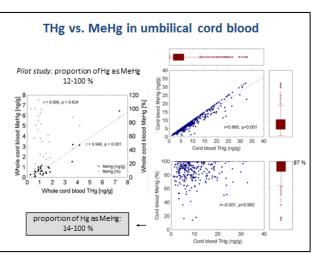

Results: The results of the PHIME Mediterranean cohort have been evaluated, particularly in relation to methyl mercury (MeHg) exposure though fish consumption. Mercury in mother's hair and in cord blood did not predict Bayley scores but a moderate beneficial effect of fish consumption in pregnancy was observed. Other chemical elements were not associated with the outcome. It was also demonstrated that the ABC transporters appear to play a major role in transport of MeHg across the placenta and accumulation of MeHg during early development. It was shown (1) that in three large Mediterranean birth cohorts the association between maternal fish intake and Hg in cord blood has different magnitudes depending on the children's genotype ABCB1, ABCC1, and ABCC2. The findings strengthen the hypothesis that ABC transporters play a role in mercury transport across the placenta and accumulation of MeHg during early development. As these genes appear to influence MeHg internal dose they might offset MeHg neurotoxicity.

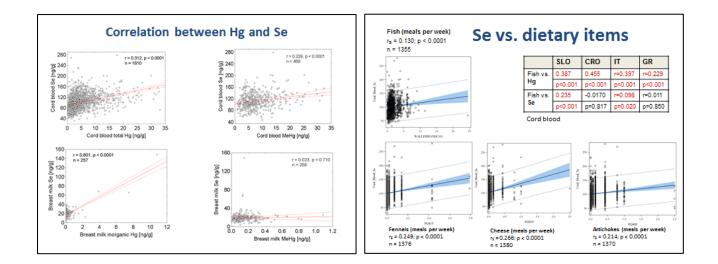

Conclusions: The studies performed so far showed that the environmental neuroepidemiology studies need to include a new focus on genetically susceptible groups in order to assess a more realistic potential risk of neurotoxicant exposures at low levels.

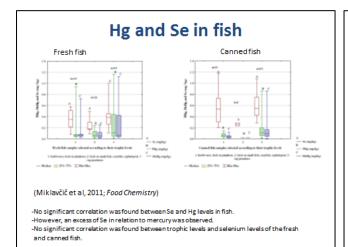
⁽¹⁾LLOP, Sabrine, SNOJ TRATNIK, Janja, MAZEJ, Darja, HORVAT, Milena, et al. Polymorphisms in ABC transporter genes and concentrations of mercury in newborns - evidence from two Mediterranean birth cohorts. PloS one, 2014, vol. 9/5, e97172-1-e97172-9.

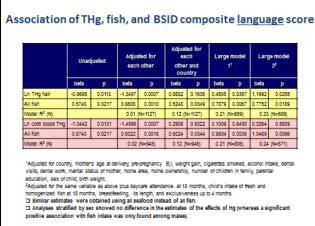







Biochemical analyses


Hair Total Hg, MeHg (samples above 1 mg/g) Cord blood Total Hg, MeHg (samples above 1 mg/g of hair), Cd, Pb, As, Se, Mn, Cu, Zn, polymorphism Plasma Se, Zn Serum Fe, Mg, Ca Milk Total Hg, MeHg (samples above 1 mg/g of hair), Cd, Pb, As, Se, Mn, Cu, Zn Cord tissue Total Hg, MeHg (samples above 1 mg/g of hair), Cd, Pb, As, Se, Mn, Cu, Zn Miconium Total Hg, MeHg (samples above 1 mg/g of hair)	Sample	Analyte
Whole blood Total Hg, MeHg (samples above 1 mg/g of hair), Cd, Pb, As, Se, Mn, Cu, Zn, polymorphism Plasma Se, Zn Serum Fe, Mg, Ca Milk Total Hg, MeHg (samples above 1 mg/g of hair), Cd, Pb, As, Se, Mn, Cu, Zn Cord tissue Total Hg, MeHg (samples above 1 mg/g of hair)	Hair	Total Hg, MeHg (samples above 1 mg/g)
Serum Fe, Mg, Ca Milk Total Hg, MeHg (samples above 1 mg/g of hair), Cd, Pb, As, Se, Mn, Cu, Zn Cord tissue Total Hg, MeHg (samples above 1 mg/g of hair)	Whole blood	
Milk Total Hg, MeHg (samples above 1 mg/g of hair), Cd, Pb, As, Se, Mn, Cu, Zn Cord tissue Total Hg, MeHg (samples above 1 mg/g of hair)	Plasma	Se, Zn
Cord tissue Total Hg, MeHg (samples above 1 mg/g of hair)	Serum	Fe, Mg, Ca
	Milk	Total Hg, MeHg (samples above 1 mg/g of hair), Cd, Pb, As, Se, Mn, Cu, Zn
Meconium Total Hg, MeHg (samples above 1 mg/g of hair)	Cord tissue	Total Hg, MeHg (samples above 1 mg/g of hair)
	Meconium	Total Hg, MeHg (samples above 1 mg/g of hair)



Association of THg, fish, and BSIE	O composite <u>cognitive</u> score
------------------------------------	------------------------------------

	Unadjusted		Unadjusted Adjusted for each other oth		Adjust ea othei cou	ch rand	Large model 1 ¹		Large model 2 ²	
	beta	р	beta	р	beta	р	beta	р	beta	р
Ln THg hair	-1.6987	<0.0001	-1.8929	<0.0001	0.2152	0.5745	-0.0369	0.9325	0.0614	0.9034
All fish	0.0312	0.8916	0.4398	0.0651	0.3399	0.1325	0.3917	0.1423	0.5645	0.0701
Model R ² (N)	0.02 (N=112		N=1127)	0.14 (N=1127)		0.17 (N=959)		0.21 (N=689)		
Ln cord blood THg	-1.8344	<0.0001	-2.1121	<0.0001	0.0080	0.9847	-0.2521	0.5947	-0.2524	0.6472
All fish	0.0312	0.8916	0.5685	0.0358	0.4675	0.0677	0.6667	0.0261	0.9312	0.0084
Model R ² (N)	0.03 (N=945)		0.15 (*	0.15 (N=945) 0.19 (N=806)		0.23 (N=571)				
¹ Adjusted for count visits, dental work, education, sex of o ² Adjusted for the s	marital sta child, birth (atus of moth weight.	er, home	area, home	ownership	o, number	of childre	en in fami	ly, parental	

Similar estimates were obtained using all seafood instead of all fish.
Analyses stratified by sex showed no difference in the estimates of the effects of Hg (whereas a significant positive association with fish intake was only found among males).

Association of THg, fish, and BSID composite motor score

	Unadjusted		Unadjusted Adjusted for each other		Adjusted for each other and country		Large model 1 ¹		Large model 2 ²	
	beta	Р	beta	р	beta	P	beta	P	beta	P
Ln THg hair	-1.5541	<0.0001	-1.6444	<0.0001	-0.3548	0.2211	-0.2569	0.4337	0.0100	0.9783
All fish	-0.1516	0.3832	0.1820	0.3110	-0.0480	0.7786	0.0152	0.9396	0.1640	0.5205
Model R ² (N)			0.03	(N=1127)	0.14 (N	l=1127)	0.16 (N=959)	0.19	(N=689)
Ln cord blood THg	-1.4829	<0.0001	-1.6419	<0.0001	-0.3797	0.2316	-0.3336	0.3535	-0.3266	0.4141
All fish	-0.1516	0.3832	0.3254	0.1116	0.0825	0.6703	0.1888	0.4057	0.3555	0.1644
Model R ² (N)			0.03	(N=945)	0.15 (7	v=945)	0.17 (N=806)	0.21	(N=571)

Adjusted for county, mother's age at delivery, pre-pregnancy 'B, weight pain, cigarettes smoked, alcohol intake, dental visits, dental work, martial status of mother, home area, home ownership, number of children in family, parental education, sex of child, birm weight. "Adjusted for the same variable as above plus daycare attendance at 18 months, child's intake of fresh and homogenized ifsn at 18 months, treastReefing, its length, and exclusiveness up to 4 months. Similar edimates were obtained using all aseafood instead of all fish. Analyses stratified by sex showed no difference in the estimates of the effects of Hg.

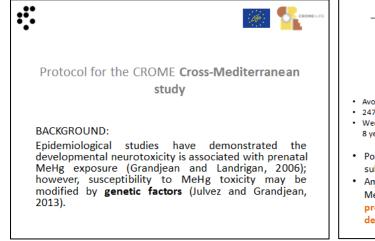
BSID III composite score	N	Mean	STD	25 th percentile	Median	75 th percen	Mir Mir	n Ma:
Cognitive	1146	106.6	11.1	100	105	115	65	145
Language	1146	100.2	12.1	91	100	109	47	141
Motor	1146	102.3	8.4	97	103	107	61	139
BSID III	lt	aly ¹	5	Slovenia	C	roatia	Gr	eece
composite score	Mean	Median	Mean	Median	Mean	Median	Mean	Medi
Cognitive	106.3	105	114.1	115	107.6	105	101.5	100
Language	97.7	97	106.0	106	108.2	109	97.4	97
Motor	101.5	100	106.2	107	108.4	107	98.8	100

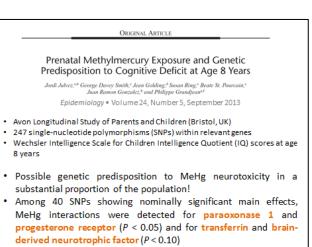
Conclusions regarding Bayley testing and Hg from fish consumption (F. Valent; UNIUD)

- In models adjusted for country and other potential confounders, Hg in hair and cord blood was NOT associated with BSID III composite scores.
- Nevertheless, a moderate but significant beneficial effect of fish consumption in pregnancy was observed for cognitive and language development.
- Such effect may be due to PUFAs contained in fish. This hypothesis will be tested when the concentrations of PUFAs in the blood of the women is available (biochemical analyses are underway).

OPEN BACCESS Freely available online

Polymorphisms in ABC Transporter Genes and Concentrations of Mercury in Newborns – Evidence from Two Mediterranean Birth Cohorts


Sabrina Lugu^{1,3}, Karin Engström³, Ferran Ballester^{1,3,4}, Elis Franforte³, Ayman Alhamdow², Federica Pisa³, Janja Snoj Trathik⁴, Datja Mazej¹, Mario Murcla^{1,3}, Marisa Rebagliato^{2,7}, Mariona Bustamante^{3,4,40}, Jordí Sumye^{2,46,51,1}, Alkaterini Sofianou-Katsoulla¹³, Alexia Prasoull¹³, Eleni Antonopoulou¹³, Joanna Antoniadou¹², Sheena Nakou¹², Fabio Barbone³, Milena Horvat⁴, Karin Broberg^{3,13},


two birth cohort studies conducted in Spain (INMA), Italyand Greece (PHIME)
 ABCB1 rs2032582, ABCC1 rs11075290, and ABCC2 rs2273697 modified the associations between maternal fish intake and cord blood mercury

PLOS ONE

- associations between maternal fish intake and cord blood mercury concentrations - stronger association between maternal fish intake and cord blood mercury concentrations was shown
- The ABC transporters appear to play a major role in transport of MeHg across the placenta and accumulation of MeHg during early development

Llop S, Engström K, Ballester F, Franforte E, Alhamdow A, et al. (2014) Polymorphisms in ABC Transporter Genes and Concentrations of Mercury in Newborns – Gidence from Two Mediterranean Birth Cohorts. PLoS ONE 9(5): e97172. doi:10.1371/journal.pone.0097172

Gene mutations affecting absorptiondistribution-metabolism-elimination

Gene	Role	Reference
GCL (glutamyl-cystein ligase) - catalytic subunit GCLC - modifier subunit GCLM	rate-limiting enzyme for GSH synthesis	GCLC and GCLM polymorphism affecting retention of MeHg (Schlawicke et al., 2008; Barcelos et al., 2013); GCLS rs1555903 – Hg retention in umbilical cord (Julvez et al., 2013)
GST (glutathione-S-transferase)	catalyse conjugation of GSH	GSTP1 and GSTM1 polymorphism (Schlawicke et al., 2008; Barcelos et al., 2013)
Other glutathione related genes		
MT (metallothionein)	metal-binding (regulation of metal homeostasis), protection against oxidative stress)	
ABC transporters	Responsible for active transport of various compounds across	Llop et al, 2014 (submitted): ABC transporters play a role in mercury
(ABCC1, ABCC2, ABCB1)	biological membranes incl. therapeutical drugs and xenobiotics	transport across the placenta and accumulation of MeHg during early development

Gene mutations affecting neuropsychological performance:

Gene	Role	Reference
CPOX4 (coproporphyrinogen oxidase)	related to brain development and neurotransmitter metabolism (MeHg could interact to their receptors) (Echeverria et al., 2006;)	deficits in neuropsychological performance (Echeverris et al., 2006); modifying general cognitive function (Julvez et al., 2013); CPOX4 r11131837 - Hg in urine and child neurodevelopment
APOE (apolipoprotein)	a protein transporter expressed in the brain; Epsilon4 allele associated with poor neural repair function (a risk factor for AD)	APDE variants modified the adverse effects of cord blood Hg on neurodevelopment (Ng et al., 2013).
BDNF (brain-derived Neurotrophic Factor)	related to brain development and neurotransmitter metabolism (methylmercury could interact to their receptors) (Echeverria et al., 2006;)	
PGR (progesterone receptor)	same	modifying the MeHg-outcome
PON1 (Paraoxonase 1)	enzyme that inhibits oxidation of lipoproteins through hydrolysis of lipid perovides. Such oxidative damage can be induced by MeHg (Ayotte et al., 2001; Hernández et al., 2005).	associations with cognitive deficits in children with the minor alleles (mutations).
TF (transferrin)	Iron uptake (Woods et al., 2013)	

The way forward ...

- Existing birth cohorts: Slovenia, Croatia, Italy, Greece (PHIME) and Spain (INMA)
- Follow-up at 6-7 years of age: Hair and urine sampling & saliva sampling
- Analyses of trace elements
- Neuropsychological testing (Wechsler Intelligence Scale for Children)
- Genotyping: GSTT1/GSTM, GSTM3, GSR, GPX1, SOD1, SOD2, CAT, PON1, BDNF, PGR, TF ... ?

Key publications

- Valent F, Horvat M, Sofianou-Katsoulis A, Spiric Z, Mazei D, Little D, Prasouli A, Mariuz M, <u>Tamburlini G, Naisou S, Barbone F</u>, 2013. Neurodevelopmental effects of low-level prenatal mercury exposure from maternal fish consumption in a Mediterranean cohorts study rationale and design. <u>J Epidemiol</u> 23(2): 146-52.
- Factoriate and design. <u>JEDPErtra</u>, Mazej, Darja, Snoj Tratnik, Janja, Krsnik, Mladen, Planinšek, Pietra, Osredkar, Joško, Horvat, Milena. Biomarkers of low-level mercury exposure through fish consumption in pregnant and lactating Slovenian women. Environ. res. (N.Y. N.Y.), 2011,
- ⁷ Miklavčić, Ana, Stibilj, Vekoslava, Heath, Ester, Polak, Tomaž, Snoj Tratnik, Janja, Klavž, Janez, Miklavčić, Ana, Stibilj, Vekoslava, Heath, Ester, Polak, Tomaž, Snoj Tratnik, Janja, Klavž, Janez, Miklavčić, A.; Snoj Tratnik, J.; Mazej, D.; Krsnik, M.; Mariuz, M.; Sofianou, K.; Spirić, Z.; Barobene, F.; Horvat, M., 2013. Horvat, an area. Environmental Research 120, p. 7–14. 17
- Miklavčič Višnjevec, A.; Valent, F.; Parpinel M., Casetta, A.; Snoj Tratnik, J.; Mazej, D.; Krsnik, M.; Mariuz, M.; Sofianou, K.; Špirić, Z.; Barbone, F.; Horvat M. The association of mercury, fish consumption and child development in the Mediterranean cohort. In preparation.

Related references

- I. Bilic Cace, A. Milardovic, I. Prpic, R. Krajina, O. Petrovic, P. Vukelic, Z. Spiric, M. Horvat, D. Mazej, J. Snoj, 2011. Relationship between the prenatal exposure to low-level of mercury and the size of a newborn's cerebellum. Medical Hypotheses 76 (2011) 514–516. evel of mercury
- DEROMA, L., PARPINEL, Maria, TOGNIN, Veronika, CHANNOUFI, L., SNOJTRATNIK, Janja, HORVAT, Milena, VALENT, Francesca, BARBONE, Fabio. Neuropsychological assessment at school-age and prenatal low-level exposure to mercury through fish consumption in an Italian birth cohort living near a contaminated site. Int. j. hyg. environ. health (Print), 2013, vol. 216, issue 4, p. 486-493.
- VALENT, Francesca, PISA, Federica, MARIUZ, Marika, HORVAT, Milena, GIBIČAR, Darija, FAJON, Vesna, MAZEJ, Darja, DARIS, Fulvio, BARBONE, Falsio. Esposizione fetale e perinatale a mercurio e selenio : valutazione alla baseline di una coorte di bambini del Friuli Venezia Giulia = Fetal and perinatal exposure to mercury and selenium : baseline evaluation of a cohort of children in Friuli Venezia Giulia, Italy. Epidemiol. prev., 2011, vol. 35, no. 1, p. 33-42.

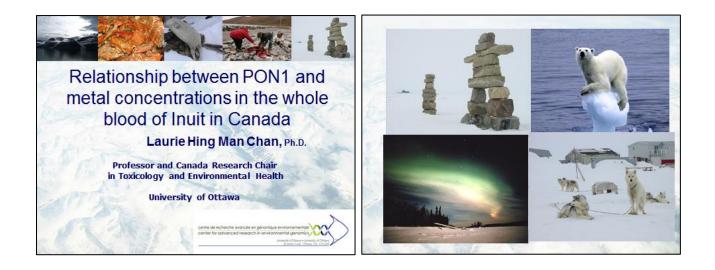
Technical Report

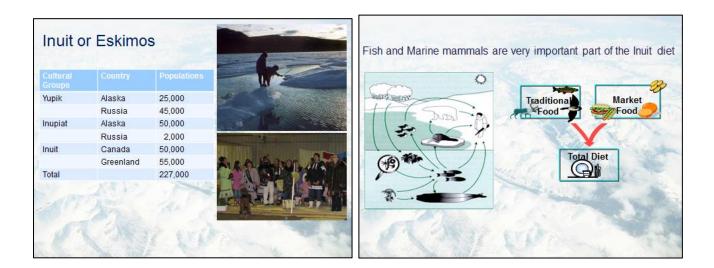
Project no. FOOD-CT-2006-016253. PHIME Public health impact of long-term, low-level mixed element exposure in susceptible population strata. Instrument: Integrated Project. Thematic Priority: Priority 5, Food Quality and Safety. Thank you for your attention

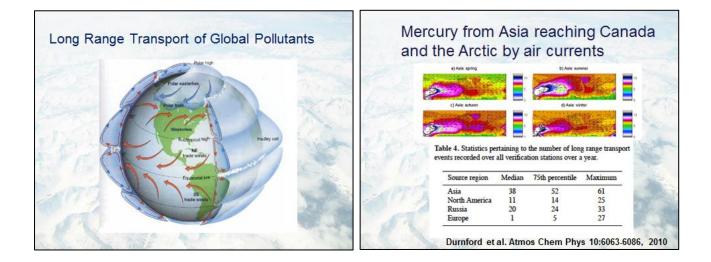
ありがとうございます

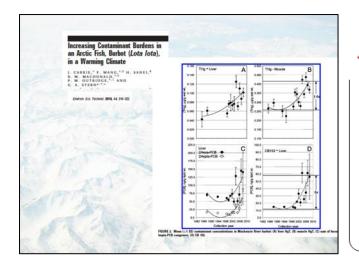
Relationship Between Paraoxonase-1 (PON1) and Metal Concentrations in the Whole Blood of Inuit in Canada

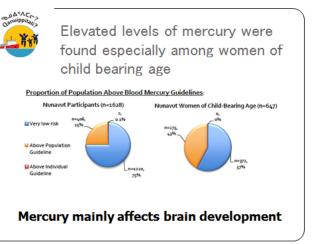
Brian D. Lairda, Alexey B. Goncharovb, Pierre Ayottec, Laurie Hing Man Chana*

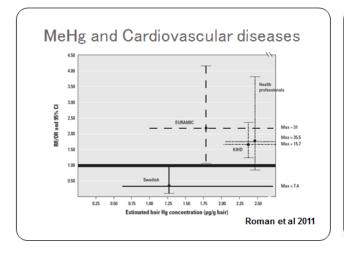

* University of Ottawa, Canada

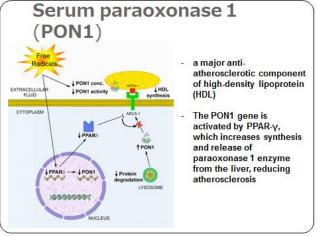

Objective: This cross-sectional study aimed to determine whether environmental exposure to various metals is associated with paraoxonase-1 (PON1) activity in Inuit people routinely exposed to mercury (Hg), cadmium (Cd), lead (Pb), and (Se) selenium.

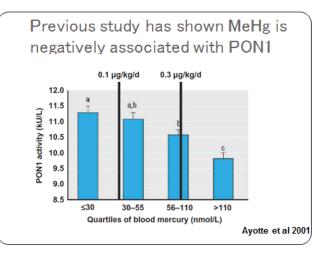

Methods: PON1 activity and metal concentrations were measured in blood collected from 2172 healthy participants. Sociodemographic, anthropometric and lifestyle variables were also assessed. The associations between PON1 activity and blood metal concentrations, HDL, omega-3 fatty acid blood levels, age, sex, body mass index (BMI), and lifestyle habits (eg. smoking and alcohol consumption) were explored via multiple linear regression.


Results: PON1 activity was positively associated with Se blood concentration ($\beta = 0.056$, P = 0.001) but was negatively associated with Cd blood concentration ($\beta = -0.025$, P < 0.001). No association was observed between PON1 activity and Hg or Pb blood concentrations.


Conclusions: Our results suggest that PON1 activity is modulated by metal exposure, and Inuit traditional foods may confer health benefit by increasing PON1 activity via higher Se intakes. These findings underline that current environmental metal exposures among Inuit living in the Canadian Arctic are associated with paraoxonase activity, a toxicologically-relevant biochemical parameter.



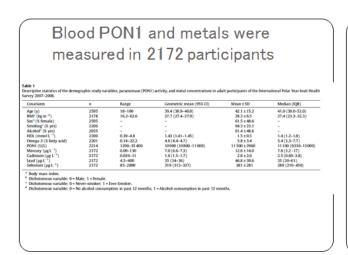


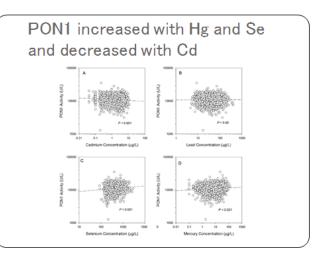


PON1 is inversely associated with increased risk of cardiovascular disease

PON1 baseline activity (nmol/ml/min)	Quartile 4 >1640	Quartile 3 899-1640	Quartile 2 450–899	Quartile 1 <450
N (overall)	315	325	326	311
Adjusted HR ^a for MI/CVA (95% CI)	1.0	2.9 (1.3-6.4)	3.1 (1.4-7.0)	4.4 (2.0-9.6
n (no CVD at baseline)	80	61	57	56
Adjusted HR for first cardiovascular event	1.0	0.6 (0.1-3.1)	1.2(0.3-5.3)	1.7 (0.5-6.4

Note. Adapted from Bhatacharya et al. (2008), Quartile 4, the reference group contains the greatest PON1 activity at baseline. Abbreviations: PON1, paraoxonase-1; HR, bazard ratio; ML, mycoradial infarction; CVA, cerebrovascular accident; CVD, cardiovascular disease. • #Hazard ratio adjusted for a variety of traditional cardiovascular risk factors including diabetes status, C-reactive protein, body mass


"Hazard ratio adjusted for a variety of traditional cardiovascular risk factors including diabetes status, C-reactive protein, body ma index, and medication use.

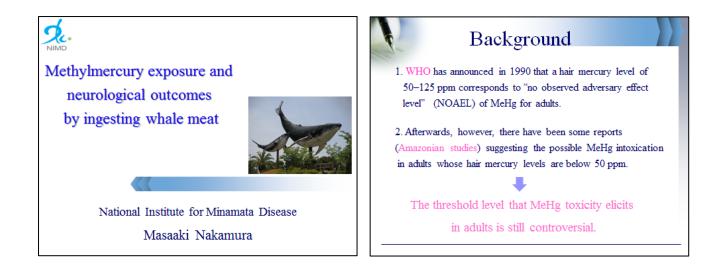


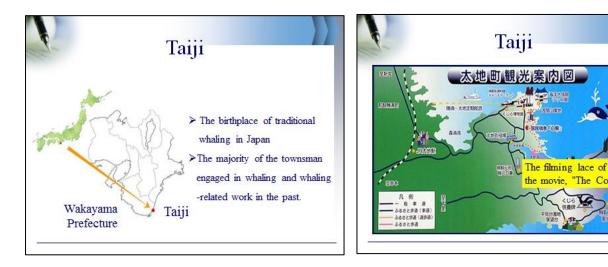


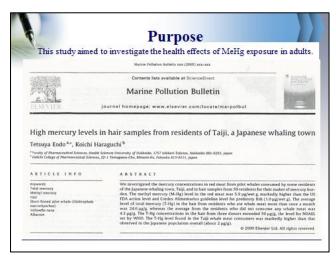
Methylmercury exposure and neurological outcomes by ingesting whale meat

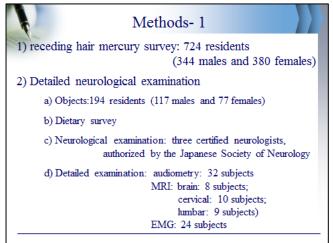
Masaaki Nakamura*, Noriyuki Hachiya, Ken-ya Murata, Ichiro Nakanishi, Tomoyoshi Kondo, Akira Yasutake, Ken-ichiro Miyamoto, Ping Han Ser, Sanae Omi, Hana Furusawa, Chiho Watanabe, Fusako Usuki, Mineshi Sakamoto

* Department of Clinical Medicine, National Institute for Minamata Disease, Minamata, Japan

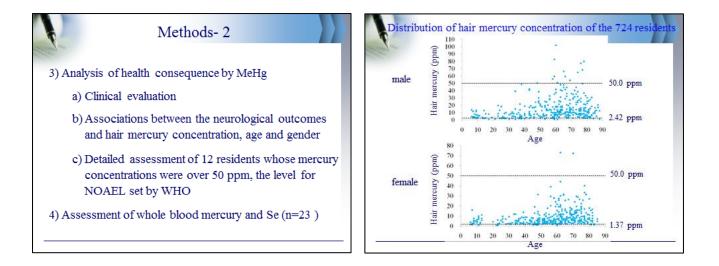

Background: Methylmercury (MeHg) is a major environmental neurotoxicant that causes damage to the central nervous system. In Japan, industrial emission of MeHg has resulted in MeHg intoxication in Minamata and Niigata, the so-called Minamata disease. Humans are exposed to MeHg derived from natural sources, primarily fish and fish predators. Therefore, MeHg continues to be an environmental risk to human health, particularly in susceptible populations that frequently consume substantial amounts of fish or fish predators such as whale.

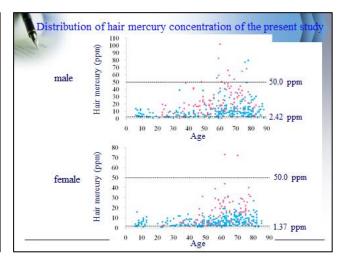

Objective: This study aimed to investigate the health effects (especially neurological abnormalities) of MeHg exposure in adults.

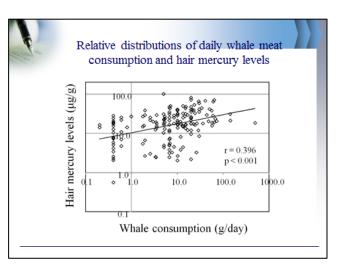

Methods: The subjects were 194 residents (117 males, 77 females; age 20–85 years) who resided in the coastal town of Taiji, the birthplace of traditional whaling in Japan. We analyzed hair for mercury content and performed detailed neurological examinations and dietary surveys. Audiometry, magnetic resonance imaging, and electromyography were performed to diagnose neurological defects. Whole blood mercury and selenium (Se) levels were measured in 23 subjects.

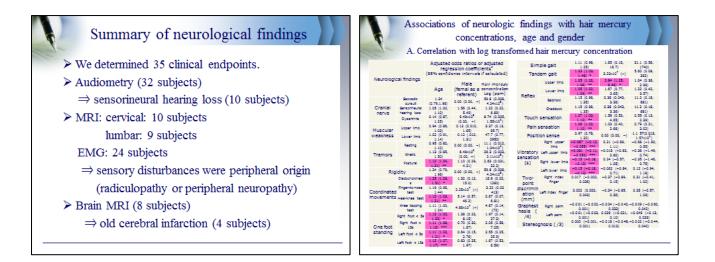

Results: The geometric mean of the hair mercury levels was 14.9 μ g/g. Twelve subjects revealed hair mercury levels >50 μ g/g (NOAEL) set by WHO. Hair mercury levels significantly correlated with daily whale meat intake. These results suggested that residents in Taiji were highly exposed to MeHg by ingesting MeHg-contaminated whale meat. Multivariate regression analysis demonstrated no significant correlations between hair mercury levels and neurological outcomes, whereas some of the findings significantly correlated with age. A significantly positive correlation between whole blood mercury and Se levels was observed and the whole blood mercury/Se molar ratios of all subjects were <1.

Conclusions: We investigated the health effects of MeHg exposure in 194 adult Taiji residents who were considered to be highly exposed to MeHg by ingesting MeHg-contaminated whale meat. No significant correlations were determined between hair mercury levels and neurological outcomes. The results of whole blood mercury/Se molar ratios of all subject suggests that sufficient Se intake might be one of causes of the absence of adverse effects of MeHg exposure in this study.





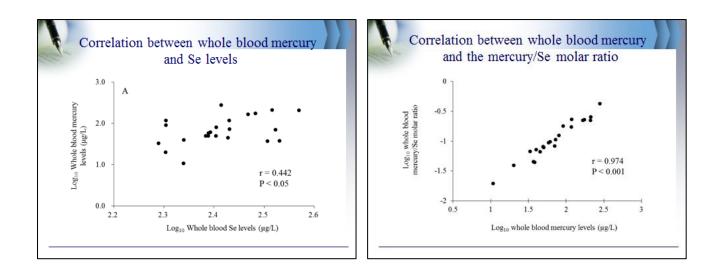

"The Cov

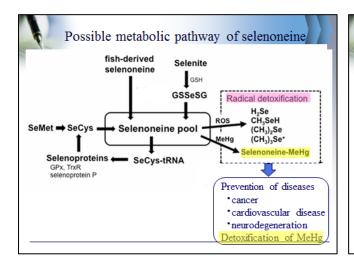


Gender	male	female	total
N	344	380	724
Age (years)			
Min	6	6	6
Max	88	92	92
Arithmetic mean	57.5	56.4	56.9
Hair mercury (µg/g)			
Min	0.6	0.7	0.6
25 Percentile	5.1	3.5	4.0
Median	10.6	5.9	7.7
75 Percentile	19.5	11.0	14.6
Max	101.9	73.1	101.9
Geometric mean	10.0	6.2	7.8
Hair mercury ≧ 50 µg/g (N)	14	2	16

Gender	male	female	total
N	117	77	194
Age (years)			
Min	20	24	20
Max	85	79	85
Arithmetic mean	56.7	59.5	57.8
Hair mercury (µg/g)			
Min	1.1	2.1	1.1
25 Percentile	11.1	5.9	7.9
Median	18.7	15.1	17.8
75 Percentile	32.7	24.3	28.7
Max	101.9	73.1	101.9
Geometric mean	17.2	12.1	14.9
Hair mercury \geq 50 µg/g (N)	10	2	12

	Ass	sociatio	ns of n	eurologi	ic find	ings wi	ith hair	mercury	,
1				entration					
S B	. Correla	tion wit	h hair m	ercury lev	vel clas	sified as	the first o	or forth q	uartiles
			odds ratios o ession coeffic		Sim	ple galt	1.03 (0.91, 1.18)	2.97×10 ⁷ (-)	2.83×10 ⁷ (-)
			ence intervala		Tanc	lem galt	1.22 (0.94, 1.58)	1.97×10 ⁷ (-)	2.23×107 (-)
Neurologic	al findings		Male	Hair moroury concentration		Upper limb	1.03 (0.98, 1.08)	4.57 (0.89, 23.6)	1.45 (0.33, 6.31)
		Age	(femal as a referent)	Quartile 4 (Quartile 1 as	Reflex	Lower Imb	1.08 (1.02, 1.13)	1.19 (0.36, 3.96)	0.94 (0.28, 3.36)
	Secondo pursuit		NA *	a referent)	Kellex	Rebinski	1.03 (0.83, 1.28)	9.38×10 ⁴ (-)	9.11×10 ⁸ (-)
Cranial	Sensorineural hearing loss	1.05 (0.98, 1.12)	5.80 (0.57, 59,2)	0.45 (0.07, 2.95)		Cheddock	1.03 (0.83, 1.28)	9.35×10 ⁴ (-)	9.11×10 ⁴ (-)
nerve	Dyearthria	1.03 (0.63, 1.26)	9.38×10 ⁴ (0.00, -)	9.11×10 ⁴ (0.00, -)	Touch	sensation	1.04 (0.98, 1.11)	0.85 (0.15, 4.79)	0.92 (0.15, 5.78)
Muscular	Upper limb	0.91 (0.77, 1.08)		5.23×10 ⁻⁷ (-)	Pain s	ensation	1.04 (0.97, 1.11)	0.51 (0.10, 2.54)	1.51(0.26, 8.79)
weakness	Lower Imb	1.02 (0.87, 1.19)	0.28 (0.02, 4.83)	8.91×107 (-)	Positi	on sense	_	NA *	
	Resting	1.16 (0.60.	6 22×10 ⁴ (0.00.	* 100 million 100 million		Right upper limb	-0.076 (-0.12 -0.029) **	-0.018 (-1.38 1.33)	-0.95 (-2.46 0.57)
Tremors	Khatic	1.74)	-) 0.17 (0.02,	-)	Vibratory	Left upper limb	-0.081 (-0.12	-0.21 (-1.41, 1.00)	-0.40 (-1.75
	Postural	1.58)	1.76)	1.57×10 ⁸ (-)	sensation (s)		-0.15 (-0.19.		
Rigi	Olty Distorbokinasis	1.18 (0.89.		1.22×107 (-)		Right lower limb	-0.11) ***	1.84)	0.53)
	Fingen-to-nose	1.57) 1.03 (0.83,		9.11×10 ⁴ (-)		Left lover limb	-0.14 (-0.18, -0.10) ***	0.37 (-0.76, 1.49)	-0.38 (-1.65 0.89)
Coordinated movements	test Heal-knee test	1.28) 1.09 (0.98,	1.23×10 ² (-)	0.55 (0.04.	Two-point discrimina		0.008 (-0.017	-0.42 (-1.14, 0.29)	0.50 (-0.30, 1.31)
	Khee tapping test	1.22) 1.12 (0.92, 1.55)		7.58) 1.64×10 ⁷ (-)	tion (mm)		0.017 (-0.015	-0.43 (-1.34,	0.36 (-0.66,
	Right foot < Se	1.42 (1.03,	1.53×10 ⁸ (-)	0.50 (0.00, 82.0)		Right calm	0.000 (-0.002		-0.013 (-0.064,
One foot	Right foot < 15e	1.21 (1.08,	1.15 (0.21, 0.34)		Graphesth esla (ages pairs	0.001)	0.033)	0.038)
standing	Left foot ik St	1.03×10 ¹⁰ (-)	7.62×10 ⁻⁰ (-)	8.12×10 ⁸¹ (-)	/4)	Left paim	-0.001 (-0.004, 0.002)	0.010 (-0.067, 0.087)	-0.050 (-0.1 0.037)
	Left foot ik 15r	1.21 (1.08,	1.15 (0.21, 6.54)	2.40 (0.35, .		nosis (/3)	0.002)	NA [®]	


	Associat	tions of neurologic findings with hair mercury
1-		concentrations, age and gender
B. Cor	relation	with hair mercury level classified as the first or forth quartiles
	I	Range of hair mercury concentration of four quartiles
	1	1.1 ppm to 7.9 ppm
	2	7.9 ppm to 17.8 ppm
	3	17.8 ppm to 28.7 ppm


28.7 ppm to 101.9 ppm

4

	Assoc	iations	of neuro	ologic f	inding	s with	hair me	ercury	
4	C. C		oncentra with hair						
			ratios or adjus coefficients*	•	Sim	ple gait	1.10 (0.99, 1.22)	1.90 (0.19, 19.3)	10.21 (1.29, 80.54) *
		(95% confi	dence Intervals P		Tanc	lem galt	1.51 (1.05, 1.65) *	2.22×107 (-)	1.85×10 ⁻⁸ (-)
Neurologi	cel findings	Ass	Male (femal as a	Hair mercury concentration a 50 ppm (<		Upper Imb	1.05 (1.02, 1.05) **	3.21 (1.40, 7.35) **	0.42 (0.09, 2.10)
			referent)	50 ppm az a referent)	Beflex	Lower Imb	1.08 (1.02, 1.09)	1.72 (0.79, 3.76)	1.37 (0.38, 4.99)
	Secondo pursuit	1.16 (0.94, 1.65)	0.00 (0.00, -)	0.00 (0.00, -)	Reflex	Babinaki	1.13 (0.99, 1.29)	0.56 (0.07, 4.52)	5.03×10 ⁻⁸ (-)
Cranial nerve	Sensorineural hearing loss	1.05 (1.00, 1.10) *	1.63 (0.46, 5.74)	7.90 (1.95, 22.29) **		Chaddock	1.15 (0.99, 1.29)	0.56 (0.07, 4.87)	5.03×10 ⁻⁸ (-)
	Dyearthria	1.05 (0.91, 1.22)	1.50×10 ⁷ (0.00,	0.00 (0.00, -)	Touch	sensation	1.07 (1.02,	1.63 (0.55, 4.52)	0.64 (0.08, 5.47)
Muscular	Upper Imb	0.97 (0.91, 1.04)	0.22 (0.02, 2.20)	6.49x10 ⁻⁸ (-)	Pain s	ensation	1.08 (1.02,	1.10 (0.42, 2.84)	0.55 (0.07, 4.01)
weekness	Lower Imb	1.04 (0.94, 1.14)	0.15 (0.01, 1.60)	2.69x10 ⁻⁶ (-)	Posit	on sense	1.00 (0.95,		0.00 (0.00)
	Reating	0.96 (0.67, 1.10)	1.32×10 ⁷ (0.00, -)	0.00 (0.01, -)			1.17) -0.093		-0.10 (-1.89.
Tromora	Kinatic	1.10 (0.90,	1.28×10 ⁴ (0.00,	0.00 (0.01, -)		Right upper limb	(-0.12, -0.063) ***	1.03)	1.64)
	Postural	1.12 (1.04, 1.20) ***	1.24 (0.22, 4.79)	6.97x10 ⁻⁰ (-)	Vibratory	Left upper limb	-0.088 (-0.11,	-0.099 (-0.91, 0.71)	-0.33 (-1.96,
Re	idity	1.16 (0.64, 1.65)	0.00 (0.00, -)	0.00 (0.00, -)	sensation (s)		-0.060) ***		-0.84 (-2.44
	Disdochokinesis	1.21 (1.02,	1.70 (0.15, 19.2)	1.98x10 ⁻⁷ (-)		Right lower limb	-0.13) ***	1.15)	0.76)
Coordinated	Ringen-to-noze text	1.17 (0.99, 1.29)	2.65x10 ⁷ (-)	2.07x10 ⁻⁸ (-)		Left lover limb	-0.15 (-0.18, -0.15)	-0.002 (-0.77, 0.77)	-0.82 (-2.15, 0.92)
movements	Heal-knee text	1.12 (1.03, 1.22)	4.65 (0.52, 41.7)	9.20x10 ⁻⁰ (-)	Two-point discrimina	Right Index finger	0.019 (0.002, 0.037) *	-0.34 (-0.86, 0.18)	-0.20 (-1.24, 0.84)
	Knee tapping test	1.11 (0.99, 1.24)	4.76x10 ⁷ (-)	1.40x10 ⁻⁰ (-)	tion (mm)	Left Index Inger	0.024 (0.004, 0.044) *	-0.22 (-0.82, 0.39)	-0.08 (-1.29, 1.15)
	Right foot < Sa	1.12 (1.02,	1.32 (0.022, 7.94)	1.20x10 ⁻⁰ (-)	(mm)		-0.001	-0.006	0.024 (-0.050
One feet	Right foot < 15s	1.11 (1.07, 1.16)	0.91 (0.34, 1.92)	1.02 (0.24, 4.26)	Graphest	Right paim	(-0.002, 0.001)	(-0.043, 0.031)	0.098)
standing	Left foot $< \mathrm{Sr}$	1.11 (1.02, 1.19) ***	0.95 (0.23, 4.05)	1.04x10 ⁻⁸ (-)	nesia (/4)	Left paim	-0.001 (-0.003,	0.038 (-0.022	0.038 (-0.082
	Left foot $\ll 15\epsilon$	1.13 (1.06, 1.16)	1.00 (0.42, 2.40)	0.66 (0.20, 2.64)			0.001)	-0.022	
					Stereo	gnosis (/3)	(-0.002, 0.000)	(-0.053× 0.008)	0.018 (-0.042, 0.079)

	ose	hair	merc	ury co	ncentra	tions	were over 50 ppm
Ne	Gender	-	Hair mercury (up/p)	Wide-based gait	Sensorine unal hearing loss	Corebellar sign	Sensory disturbunce and two-point discrimination (mm)
1	м	49	50.4	()	()	()	() Two-point discrimination: 6.0, 6.0
2	м	61	50.6	mili (+)	()	()	Decreased vibratory sensation of the lower limbs: 5s, 4s Two-point discrimination: 2.0, 2.6
3	м	70	54.0	()	left (+)	()	() Two-point discrimination: 1.5, 1.5
4	м	61	59.2	(+)	(+)	()	() Two-point discrimination: 2.1, 2.1
s	м	66	59.2	()	()	()	() Two-point discrimination: 4.0, 5.0
6	м	74	65.0	()	()	()	() Two-point discrimination: 2.5, 3.3
7	м	65	66.2	()	(+)	()	() Two-point discrimination: 5.0, 4.2
8	м	78	68.4	()	(+)	()	Dyncatheain (left L5, S1) Two-point discrimination: 3.2, 3.8
9	F	70	72.2	()	()	()	Decreased vibratory senantion of the lower limbs: 5s, 5s Two-point discrimination: 5.0, 5.0
10	F	62	73.1	()	()	()	() Two-point discrimination: 3.8, 3.8
11	м	60	82.6	()	()	()	() Two-point discrimination: 2.6, 2.2
12	м	60	101.9	()	()	()	Decreased vibratory sensation of the lower limbs: 6s, 7s Two-point discrimination: 27, 3, 5

Conclusions

- We investigated the health effects of MeHg exposure in 194 adult Taiji residents who were considered to be highly exposed to MeHg by ingesting MeHg-contaminated whale meat.
- Multivariate regression analysis demonstrated no significant correlations between hair mercury levels and neurological outcomes, whereas some of the findings significantly correlated with age.
- 3. Sufficient Se intake might be one of causes of the absence of adverse effects of MeHg exposure in this study.

Collaborators

- Ken-ya Murata, Ichiro Nakanishi, Tomoyoshi Kondo (Wakayama Medical University)
- Noriyuki Hachiya, Ken-ichiro Miyamoto, Fusako Usuki, Mineshi Sakamoto (National Institute for Minamata Disease)
- Akira Yasutake (Kumamoto University)
- Ping Han Ser, Sanae Omi, Hana Furusawa, Chiho Watanabe (Tokyo University)

Negative Confounding by Essential Fatty Acids in Methylmercury Neurotoxicity Associations

Anna L Choi, Ulla B. Mogensen, Kristian S. Bjerve, Frodi Debes, Pal Weihe, Philippe Grandjean, Esben Budtz-Jørgensen

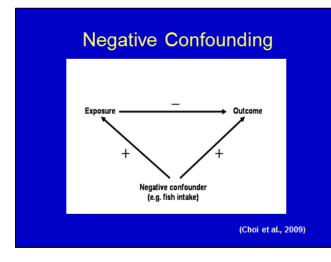
* Harvard University, USA

Background: Methylmercury, a worldwide contaminant of fish and seafood, can cause adverse effects on the developing nervous system. However, long-chain n-3 polyunsaturated fatty acids in seafood provide beneficial effects on brain development. Negative confounding will likely result in underestimation of both mercury toxicity and nutrient benefits unless mutual adjustment is included in the analysis.

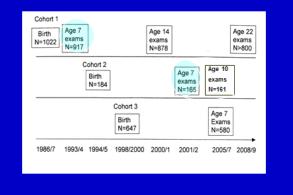
Methods: We first examined these associations in 176 Faroese children, in whom prenatal methylmercury exposure was assessed from mercury concentrations in cord blood and maternal hair. The relative concentrations of fatty acids were determined in cord serum phospholipids. Neuropsychological performance in verbal, motor, attention, spatial, and memory functions was assessed at 7 years of age. Multiple regression and structural equation models (SEMs) were carried out to determine the confounder-adjusted associations with methylmercury exposure. Supplementary SEM analyses on verbal and motor functions included a larger previous cohort with similar characteristics, but the fatty acid measurements were missing. A total of 1016 children with available data were included in the joint-cohort analyses with estimated fatty acid parameter for Cohort 1 using the meta-analysis method for SEM.

Results: A short delay recall (in percent change) in the California Verbal Learning Test (CVLT) was associated with a doubling of cord blood methylmercury (-18.9, 95% confidence interval [CI] = -36.3, -1.51). The association became stronger after the inclusion of fatty acid concentrations in the analysis (-22.0, 95% confidence interval [CI] = -39.4, -4.62). In structural equation models, poorer memory function (corresponding to a lower score in the learning trials and short delay recall in CVLT) was associated with a doubling of prenatal exposure to methylmercury after the inclusion of fatty acid concentrations in the analysis (-1.94, 95% CI = -3.39, -0.49). Similar results were found in the supplementary joint-cohort SEM analyses

Conclusions: Associations between prenatal exposure to methylmercury and neurobehavioral deficits in memory function at school age were strengthened after fatty acid adjustment, thus suggesting that n-3 fatty acids need to be included in analysis of similar studies to avoid underestimation of the associations with methylmercury exposure.


Negative Confounding by Essential Fatty Acids in Methylmercury Neurotoxicity Associations

Anna L Choi, Ulla B Mogensen, Kristian S Bjerve, Frodi Debes, Pal Weihe, Philippe Grandjean, Esben Budtz-Jørgensen


> NIMD Forum October 18, 2014

Nutrients in fish and seafood

- Polyunsaturated fatty acids
 - essential for normal brain development
 - possibly protecting against cardiovascular diseases
- Selenium
 - a constituent of selenoproteins
- Others

Faroe Islands prospective birth cohorts

Neuropsychological Exams

Tests were chosen according to the brain function domains:

- Verbal
- Motor
- Attention
- Spatial
- Memory

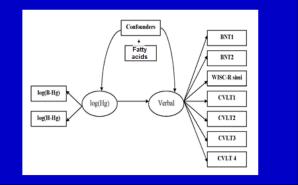
Boston Naming Test

NES2 Continuous Performance Test

Stanford-Binet Copying

Distribution of Hg and PCB exposure among the birth cohort

Exposure Biomarker	Geometric Mean	Total Range	Correlation with Cord Blood Hg
Cord blood (µg/L)	21.4	1.90-101.8	(1)
Maternal hair (µg/g)	4.10	0.32-16.3	0.84
Serum PCB (µg/g lipid)	1.13	0.04-18.4	0.45
		Choi et a	1. NTT 2014;42:85-92


Distribution of Mean Relative Concentrations of Fatty Acids (%) Among the Birth Cohort

Fatty Acid	Mean (SD)	Total Range	Correlation with DHA+EPA
DHA + EPA	9.57 (1.71)	6.40-14.5	(1)
Total n-3	10.8 (1.91)	6.97-16.7	0.98
DHA + EPA / AA	0.59 (0.12)	0.50-0.67	0.86

Change in Neurobehavioral Outcomes Associated with 1 unit Increase of DHA+EPA, and a Doubling of the Cord Blood Hg Exposure

			Hg with	DHA+EPA
Outcomes	Hg only	DHA +EPA	Hg	DHA+EPA
CVLT learning	-14.3 (-30.4, 1.87)	-0.01 (-0.95,0.93)	-15.7 (-32.3, 0.83)	0.11 (-0.83, 1.05)
CVLT short delay	-18.9(-36.3, -1.51)	0.22 (-0.11, 0.55)	-22.0(-39.4, -4.62)	0.28 (-0.05, 0.60)

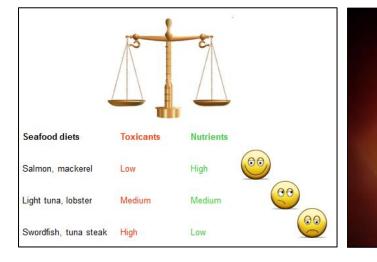
In a structural equation model, the latent exposure variable is optimized based on exposure predictors, confounders, and latent effect variable

Change in Neurobehavioral Outcome Associated with a Doubling in Hg Exposure With and Without DHA+EPA Adjustment

Outcome	Hg Ex	posure	DHA+EPA
	Without	With	
	DHA+EPA	DHA+EPA	
Memory	-1.01 (-2.21, 0.20)	-1.94 (-3.30, -0.49)	0.67 (-0.03, 1.36)
Verbal	-0.42 (-1.17, 0.32)	-0.50 (-1.06, 0.06)	0.15 (-0.12, 0.43)
Spatial	-0.13 (-0.32, 0.07)	-0.16 (-0.37, 0.05)	0.04 (-0.07, 0.15)

A joint SEM for verbal function
combining cohorts 1 and 2✓✓</t

 γ = Association of mercury exposure with the outcome


Change in outcomes associated with a doubling in Hg
experies and a one unit increases in fathy acide among the

two Faroese cohorts

Outcome	Hg effects (95% CI)			
	No fatty acids	With fatty acids		
Verbal	-0.49 (-0.75,-0.23)	-0.49 (-0.76, -0.22)		
Motor	-0.17 (-0.45, 0.12)	-0.21 (-0.50, 0.09)		

Conclusions

- Prenatal exposure to methylmercury was associated with deficits at school age in domains known to be sensitive to this neurotoxicant.
- Underestimation of mercury toxicity and fish benefits may result from a lack of mutual adjustment.
- All the study children in this fishing community with frequent consumption of seafood and pilot whale meat were fully PUFA sufficient.
- PCBs did not have any important impact on the neurodevelopmental outcomes in our cohort.
- There is considerable variability in mercury and PUFA concentrations within and across species of dietary fish.

Responsible management of developmental neurotoxicity Only one chance to develop a brain

Website: www.chef-project.dk

NIMD Forum 2014

発行 環境省 国立水俣病総合研究センター

Published by National Institute for Minamata Disease, Ministry of the Environment, Japan

〒867-0008 熊本県水俣市浜 4058-18 TEL: 0966-63-3111 FAX: 0966-61-1145

4058-18, Hama, Minamata, Kumamoto 867-0008, Japan TEL: +81-966-63-3111 FAX: +81-966-61-1145 http://www.nimd.go.jp

問い合わせ先:国際・総合研究部 Inquiry: Department of International Affairs and Environmental Sciences kokusai@nimd.go.jp